Table Of ContentSPRINGER BRIEFS IN MATHEMATICS
Gabriel Ponce
Régis Varão
An Introduction
to the
Kolmogorov–
Bernoulli
Equivalence
123
SpringerBriefs in Mathematics
SeriesEditors
NicolaBellomo
MicheleBenzi
PalleJorgensen
TatsienLi
RoderickMelnik
OtmarScherzer
BenjaminSteinberg
LotharReichel
YuriTschinkel
GeorgeYin
PingZhang
SpringerBriefsinMathematicsshowcasesexpositionsinallareasofmathematics
andappliedmathematics.Manuscriptspresentingnewresultsorasinglenewresult
inaclassicalfield,newfield,oranemergingtopic,applications,orbridgesbetween
newresultsandalreadypublishedworks,areencouraged.Theseriesisintendedfor
mathematiciansandappliedmathematicians.
Moreinformationaboutthisseriesathttp://www.springer.com/series/10030
SBMAC SpringerBriefs
EditorialBoard
LuisGustavoNonato
UniversityofSãoPaulo(USP)
InstituteofMathematicalandComputerSciences(ICMC)
DepartmentofAppliedMathematicsandStatistics
SãoCarlos,Brazil
PauloJ.S.Silva
UniversityofCampinas(UNICAMP)
InstituteofMathematics,StatisticsandScientificComputing(IMECC)
DepartmentofAppliedMathematics
Campinas,Brazil
The SBMAC SpringerBriefs series publishes relevant contributions in the fields
ofappliedandcomputationalmathematics,mathematics,scientificcomputing,and
related areas. Featuring compact volumes of 50 to 125 pages, the series covers a
rangeofcontentfromprofessionaltoacademic.
The Sociedade Brasileira de Matemática Aplicada e Computacional (Brazilian
Society of Computational and Applied Mathematics, SBMAC) is a professional
association focused on computational and industrial applied mathematics. The
societyisactiveinfurtheringthedevelopmentofmathematicsanditsapplications
inscientific,technological,andindustrialfields.TheSBMAChashelpedtodevelop
theapplicationsofmathematicsinscience,technology,andindustry,toencourage
the development and implementation of effective methods and mathematical tech-
niques for the benefit of science and technology, and to promote the exchange of
ideasandinformationbetweenthediverseareasofapplication.
http://www.sbmac.org.br/
˜
Gabriel Ponce • Régis Varao
An Introduction to the
Kolmogorov–Bernoulli
Equivalence
123
GabrielPonce RégisVara˜o
IMECC IMECC
UniversityofCampinas-UNICAMP UniversityofCampinas-UNICAMP
Campinas Campinas
Sa˜oPaulo,Brazil Sa˜oPaulo,Brazil
ISSN2191-8198 ISSN2191-8201 (electronic)
SpringerBriefsinMathematics
ISBN978-3-030-27389-7 ISBN978-3-030-27390-3 (eBook)
https://doi.org/10.1007/978-3-030-27390-3
MathematicsSubjectClassification:37-XX,28-XX,46-XX,37A35,37C40,37D30
©TheAuthor(s),underexclusivelicencetoSpringerNatureSwitzerlandAG2019
Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof
thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation,
broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation
storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology
nowknownorhereafterdeveloped.
Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication
doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant
protectivelawsandregulationsandthereforefreeforgeneraluse.
Thepublisher,theauthors,andtheeditorsaresafetoassumethattheadviceandinformationinthisbook
arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor
theeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinorforany
errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional
claimsinpublishedmapsandinstitutionalaffiliations.
ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG.
Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland
GabrielPoncewouldliketodedicatethis
booktoHelio,Ana,Pedro,Davi,Tiago,and
Juliafortheirconstantsupportand
encouragement.
RégisVarãowouldliketodedicatethisbook
toImecc—Unicamp.
Preface
Dynamical systems is a broad and active research field in mathematics, part of its
success has made into the general population by the name of “Chaos Theory” or
“The Butterfly Effect.” Ergodic theory is a dynamical system from a probabilistic
pointofview,andfromtheergodictheorypointofviewwemayevenlistsystems
according to their chaotic behavior. On the bottom of this list are the Ergodic
systems,butonthetopofthislistareKolmogorovsystemsandBernoullisystems
(themostchaoticones).Inmanysituations,Kolmogorovsystemsareequivalentto
Bernoullisystems,andwhetherornotaKolmogorovsystemisaBernoullisystem
isaclassicalprobleminergodictheory.
Thisequivalenceproblemisoneofthemostbeautifulchaptersinergodictheory.
It has the quality of combining an incredible amount of techniques and concepts
ofabstractergodictheory(suchasentropytheoryandOrnsteintheory)andsmooth
dynamics (suchasnonuniformlyhyperbolic dynamics andPesin’stheory).Onthe
other hand, what makes this theory so interesting, that is, so many different and
profound beautiful tools, might be a barrier for those willing to enter this area of
research.Therearenobooksthatcouldguideagraduatedynamicalsystemsstudent
into this research area (i.e., the Kolmogorov–Bernoulli equivalence problem from
the smooth dynamical system point of view) although there are plenty of good
books on ergodic theory and smooth dynamics. If one tries to study directly the
Kolmogorov–Bernoulli problem for nonuniformly hyperbolic systems, one could
easily get stuck into many technicalities (e.g., Pesin’s theory) and not grasp the
mainideasbehindtheproblem.
This book has been written with the primary purpose of filling this gap so that
graduate students could feel comfortable with the idea of working on some of the
open problems related to the Kolmogorov–Bernoulli equivalence (or nonequiva-
lence)problem.Thewaywehopewehaveaccomplishedthisgoalinarathersmall
bookisfocusingonthemainideasbehindtheproblem.Wemaysaythatthemost
importantpartofthisbookisChap.3,whereweproveindetailstheKolmogorov–
Bernoulliequivalenceinthecontextofatoymodel(linearAnosovdiffeomorphism).
This will help the reader to understand main ideas. The subsequent chapter deals
with the problem in the context of hyperbolic dynamics. In the last chapter, we
vii
viii Preface
briefly go through some more general contexts (such as nonuniformly hyperbolic
systems)andpresentsomeinterestingrecentideasinthearea.Thefirsttwochapters
aretheintroductionandsomepreliminariesinergodictheory.
Thereaderisassumedtohaveaworkingknowledgeinergodictheoryandhyper-
bolic dynamics so that we can focus on the Kolmogorov–Bernoulli equivalence
problem itself. We hope the reader may find this book very stimulating and feel
interestedindoingresearchontheopenproblemsrelatedtothesubject.
Campinas,Brazil GabrielPonce
Campinas,Brazil RégisVarão
September2019
Acknowledgements
GabrielPoncewaspartiallysupportedbyFAPESP(Grant#2016/05384-0).Régis
VarãowaspartiallysupportedbyFAPESP(Grant#2016/22475-9)andCNPq.
ix
Contents
1 Introduction .................................................................. 1
1.1 GeneralErgodicTheory ................................................ 1
1.2 ChaoticHierarchy....................................................... 2
1.3 KolmogorovandBernoulliSystems ................................... 3
1.4 SmoothErgodicTheoryandHyperbolicStructures................... 5
1.5 TheGoalofThisBook ................................................. 6
References..................................................................... 7
2 PreliminariesinErgodicTheory........................................... 9
2.1 MeasurePreservingDynamicalSystems .............................. 10
2.2 Birkhoff’sErgodicTheoremandtheErgodicProperty............... 12
2.3 OperationswithPartitions.............................................. 15
2.4 MeasureDisintegration................................................. 17
2.4.1 Rokhlin’sDisintegrationTheorem............................. 18
2.5 BasicsonLebesgueSpaces............................................. 19
2.6 SomeResultsonEntropyTheory ...................................... 20
2.6.1 ThePinskerPartitionandSystemswithCompletely
PositiveEntropy ................................................ 22
2.7 TheBernoulliProperty ................................................. 24
2.7.1 BernoulliShifts ................................................. 24
2.7.2 BernoulliPartitions............................................. 27
2.8 TheKolmogorovProperty.............................................. 29
References..................................................................... 32
3 Kolmogorov–BernoulliEquivalenceforErgodicAutomorphisms
ofT2 ........................................................................... 33
3.1 FiniteandVeryWeakBernoulliPartitions............................. 33
3.1.1 Thed-DistanceintheSpaceofFinitePartitions.............. 34
3.1.2 VeryWeakBernoulliPartitionsandOrnsteinTheorems...... 42
3.2 ErgodicAutomorphismsofT2AreKolmogorov...................... 44
xi