Table Of ContentStatistics for Industry and Technology
Series Editor
N. Balakrishnan
McMaster University
Department of Mathematics and Statistics
1280 Main Street West
Hamilton, Ontario L8S 4K1
Canada
Editorial Advisory Board
Max Engelhardt
EG&G Idaho, Inc.
Idaho Falls, ID 83415
Harry F. Martz
Group A-1 MS F600
Los Alamos National Laboratory
Los Alamos, NM 87545
Gary C. McDonald
NAO Research & Development Center
30500 Mound Road
Box 9055
Warren, MI 48090-9055
Kazuyuki Suzuki
Communication & Systems Engineering Department
University of Electro Communications
1-5-1 Chofugaoka
Chofu-shi
Tokyo 182
Japan
U. Narayan Bhat
An Introduction to
Queueing Theory
Modeling and Analysis in Applications
Birkha¨user
Boston • Basel • Berlin
U.NarayanBhat
ProfessorEmeritus
StatisticalScience&OperationsResearch
SouthernMethodistUniversity
Dallas,TX75275-0332
USA
ISBN:978-0-8176-4724-7 e-ISBN:978-0-8176-4725-4
DOI: 10.1007/978-0-8176-4725-4
LibraryofCongressControlNumber:2007941114
MathematicsSubjectClassification(2000):60J27,60K25,60K30,68M20,90B22,90B36
(cid:1)c2008Birkha¨userBoston
Allrightsreserved.Thisworkmaynotbetranslatedorcopiedinwholeorinpartwithoutthewrit-
tenpermissionofthepublisher(Birkha¨userBoston,c/oSpringerScience+BusinessMediaLLC,233
SpringStreet,NewYork,NY10013,USA),exceptforbriefexcerptsinconnectionwithreviewsor
scholarlyanalysis.Useinconnectionwithanyformofinformationstorageandretrieval,electronic
adaptation,computersoftware,orbysimilarordissimilarmethodologynowknownorhereafterde-
velopedisforbidden.
Theuseinthispublicationoftradenames,trademarks,servicemarksandsimilarterms,evenifthey
arenotidentifiedassuch,isnottobetakenasanexpressionofopinionastowhetherornottheyare
subjecttoproprietaryrights.
Coverdesign:DuttonandSherman,Hamden,CT.
Printedonacid-freepaper.
9 8 7 6 5 4 3 2 1
www.birkhauser.com
Inmemoryofmyparents,
VaidyaP.IshwarandParvatiBhat
Contents
Preface ......................................................... xi
1 Introduction................................................. 1
1.1 BasicSystemElements...................................... 1
1.2 ProblemsinaQueueingSystem .............................. 2
1.3 AHistoricalPerspective ..................................... 4
1.4 ModelingExercises......................................... 11
2 SystemElementModels ....................................... 13
2.1 ProbabilityDistributionsasModels ........................... 13
2.1.1 DeterministicDistribution(D) ......................... 14
2.1.2 Exponentialdistribution;Poissonprocess(M)............ 14
2.2 IdentificationofModels ..................................... 18
2.2.1 CollectionofData ................................... 18
2.2.2 TestsforStationarity ................................. 18
2.2.3 TestsforIndependence ............................... 19
2.2.4 DistributionSelection ................................ 19
2.3 ReviewExercises .......................................... 20
3 BasicConceptsinStochasticProcesses........................... 23
3.1 StochasticProcess.......................................... 23
3.2 Point,Regenerative,andRenewalProcesses .................... 23
3.3 MarkovProcess............................................ 24
4 SimpleMarkovianQueueingSystems ........................... 29
4.1 AGeneralBirth-and-DeathQueueingModel.................... 29
4.2 TheQueueM/M/1......................................... 34
4.2.1 DepartureProcess.................................... 40
4.3 TheQueueM/M/s......................................... 43
4.4 TheFiniteQueueM/M/s/K ................................ 51
4.5 TheInfinite-ServerQueueM/M/∞........................... 58
viii Contents
4.6 Finite-SourceQueues ....................................... 59
4.7 OtherModels.............................................. 62
4.7.1 TheM/M/1/1System ............................... 62
4.7.2 MarkovianQueueswithBalking ....................... 64
4.7.3 MarkovianQueueswithReneging ...................... 66
4.7.4 Phase-TypeMachineRepair ........................... 66
4.8 Remarks .................................................. 68
4.9 Exercises ................................................. 68
5 ImbeddedMarkovChainModels............................... 75
5.1 ImbeddedMarkovChains ................................... 75
5.2 TheQueueM/G/1......................................... 76
5.3 TheQueueG/M/1......................................... 98
5.4 Exercises ................................................. 112
6 ExtendedMarkovModels ..................................... 115
6.1 TheBulkQueueM(X)/M/1 ................................. 115
6.2 TheBulkQueueM/M(X)/1 ................................. 118
6.3 TheQueuesM/E /1andE /M/1............................ 120
k k
6.4 TheBulkQueuesM/GK/1andGK/M/1 ..................... 123
6.5 TheQueuesE /G/1andG/E /1 ............................ 126
k k
6.6 TheQueueM/D/s ......................................... 126
6.7 TheQueueM/M/1withPriorityDisciplines ................... 127
6.8 Exercises ................................................. 138
7 QueueingNetworks .......................................... 141
7.1 Introduction ............................................... 141
7.2 TheMarkovianNodeNetwork ............................... 142
7.3 QueuesinSeries ........................................... 144
7.4 QueueswithBlocking....................................... 147
7.5 OpenJacksonNetworks ..................................... 150
7.6 ClosedJacksonNetworks.................................... 152
7.7 CyclicQueues ............................................. 154
7.8 OperationalLawsforPerformanceAnalysis .................... 155
7.9 Remarks .................................................. 157
7.10 Exercises ................................................. 158
8 RenewalProcessModels ...................................... 161
8.1 RenewalProcess ........................................... 161
8.2 RenewalProcessModelsforQueueingSystems................. 166
9 TheGeneralQueueG/G/1andApproximations.................. 169
9.1 TheGeneralQueueG/G/1 .................................. 169
9.2 Little’sLawL=λW ....................................... 173
9.3 Approximations............................................ 175
9.4 DiffusionApproximation .................................... 178
Contents ix
9.5 FluidApproximation........................................ 180
9.6 Remarks .................................................. 183
10 StatisticalInferenceforQueueingModels ........................ 185
10.1 Introduction ............................................... 185
10.2 Birth-and-DeathProcessModels.............................. 187
10.3 ImbeddedMarkovChainModelsforM/G/1andG/M/1 ........ 191
10.4 TheQueueG/G/1 ......................................... 193
10.5 OtherMethodsofEstimation................................. 194
10.6 TestsofHypotheses......................................... 197
10.7 ControlofTrafficIntensityinM/G/1andG/M/1 .............. 197
10.8 Remarks .................................................. 199
11 DecisionProblemsinQueueingTheory .......................... 201
11.1 Introduction ............................................... 201
11.2 PerformanceMeasuresforDecisionMaking.................... 202
11.3 DesignProblemsinDecisionMaking.......................... 202
11.4 ControlProblemsinDecisionMaking ......................... 205
12 ModelingandAnalysisUsingComputationalTools ................ 207
12.1 MeanValueAnalysis........................................ 207
12.2 TheConvolutionAlgorithm.................................. 211
12.2.1 ComputingOtherPerformanceMeasures ................ 213
12.3 Simulation ................................................ 214
12.4 MATLAB................................................. 217
12.5 Exercises ................................................. 223
Appendices
A PoissonProcess: PropertiesandRelatedDistributions ............. 229
A.1 PropertiesofthePoissonProcess ............................. 229
A.2 VariantsofthePoissonProcess ............................... 231
A.3 Hyperexponential(HE)Distribution........................... 233
A.4 ErlangDistribution(E )..................................... 234
k
A.5 MixedErlangDistributions .................................. 234
A.6 CoxianDistributions;Phase-TypeDistribution .................. 235
A.7 AGeneralDistribution ...................................... 236
A.8 SomeDiscreteDistributions.................................. 236
B MarkovProcess.............................................. 239
B.1 KolmogorovEquations...................................... 239
B.2 ThePoissonProcess ........................................ 240
B.3 ClassificationofStates ...................................... 242
B.4 Phase-TypeDistributions .................................... 243
x Contents
C ResultsfromMathematics..................................... 247
C.1 Riemann–StieltjesIntegral................................... 247
C.2 LaplaceTransforms......................................... 248
C.3 GeneratingFunctions ....................................... 250
References ...................................................... 253
Index........................................................... 265
Description:This introductory textbook is designed for a one-semester course on queueing theory that does not require a course in stochastic processes as a prerequisite. By integrating the necessary background on stochastic processes with the analysis of models, the work provides a sound foundational introducti