Table Of ContentAlgebra, Topology, Differential Calculus, and
Optimization Theory
For Computer Science and Engineering
Jean Gallier and Jocelyn Quaintance
Department of Computer and Information Science
University of Pennsylvania
Philadelphia, PA 19104, USA
e-mail: [email protected]
c Jean Gallier
(cid:13)
April 24, 2017
2
Contents
1 Introduction 13
2 Vector Spaces, Bases, Linear Maps 15
2.1 Groups, Rings, and Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Vector Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.3 Linear Independence, Subspaces . . . . . . . . . . . . . . . . . . . . . . . . 33
2.4 Bases of a Vector Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.5 Linear Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.6 Quotient Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3 Matrices and Linear Maps 55
3.1 Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.2 Haar Basis Vectors and a Glimpse at Wavelets . . . . . . . . . . . . . . . . 71
3.3 The Effect of a Change of Bases on Matrices . . . . . . . . . . . . . . . . . 88
3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4 Direct Sums, The Dual Space, Duality 93
4.1 Sums, Direct Sums, Direct Products . . . . . . . . . . . . . . . . . . . . . . 93
4.2 The Dual Space E and Linear Forms . . . . . . . . . . . . . . . . . . . . . 108
∗
4.3 Hyperplanes and Linear Forms . . . . . . . . . . . . . . . . . . . . . . . . . 126
4.4 Transpose of a Linear Map and of a Matrix . . . . . . . . . . . . . . . . . . 127
4.5 The Four Fundamental Subspaces . . . . . . . . . . . . . . . . . . . . . . . 136
4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
5 Determinants 141
5.1 Permutations, Signature of a Permutation . . . . . . . . . . . . . . . . . . . 141
5.2 Alternating Multilinear Maps . . . . . . . . . . . . . . . . . . . . . . . . . . 145
5.3 Definition of a Determinant . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
5.4 Inverse Matrices and Determinants . . . . . . . . . . . . . . . . . . . . . . . 155
5.5 Systems of Linear Equations and Determinants . . . . . . . . . . . . . . . . 158
5.6 Determinant of a Linear Map . . . . . . . . . . . . . . . . . . . . . . . . . . 159
5.7 The Cayley–Hamilton Theorem . . . . . . . . . . . . . . . . . . . . . . . . . 160
5.8 Permanents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
3
4 CONTENTS
5.9 Further Readings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
6 Gaussian Elimination, LU, Cholesky, Echelon Form 169
6.1 Motivating Example: Curve Interpolation . . . . . . . . . . . . . . . . . . . 169
6.2 Gaussian Elimination and LU-Factorization . . . . . . . . . . . . . . . . . . 173
6.3 Gaussian Elimination of Tridiagonal Matrices . . . . . . . . . . . . . . . . . 199
6.4 SPD Matrices and the Cholesky Decomposition . . . . . . . . . . . . . . . . 202
6.5 Reduced Row Echelon Form . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
6.6 Transvections and Dilatations . . . . . . . . . . . . . . . . . . . . . . . . . . 224
6.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
7 Vector Norms and Matrix Norms 231
7.1 Normed Vector Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
7.2 Matrix Norms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
7.3 Condition Numbers of Matrices . . . . . . . . . . . . . . . . . . . . . . . . . 250
7.4 An Application of Norms: Inconsistent Linear Systems . . . . . . . . . . . . 259
7.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
8 Eigenvectors and Eigenvalues 263
8.1 Eigenvectors and Eigenvalues of a Linear Map . . . . . . . . . . . . . . . . . 263
8.2 Reduction to Upper Triangular Form . . . . . . . . . . . . . . . . . . . . . . 270
8.3 Location of Eigenvalues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
8.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
9 Iterative Methods for Solving Linear Systems 279
9.1 Convergence of Sequences of Vectors and Matrices . . . . . . . . . . . . . . 279
9.2 Convergence of Iterative Methods . . . . . . . . . . . . . . . . . . . . . . . . 282
9.3 Methods of Jacobi, Gauss-Seidel, and Relaxation . . . . . . . . . . . . . . . 284
9.4 Convergence of the Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
9.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296
10 Euclidean Spaces 297
10.1 Inner Products, Euclidean Spaces . . . . . . . . . . . . . . . . . . . . . . . . 297
10.2 Orthogonality, Duality, Adjoint of a Linear Map . . . . . . . . . . . . . . . 305
10.3 Linear Isometries (Orthogonal Transformations) . . . . . . . . . . . . . . . . 317
10.4 The Orthogonal Group, Orthogonal Matrices . . . . . . . . . . . . . . . . . 320
10.5 QR-Decomposition for Invertible Matrices . . . . . . . . . . . . . . . . . . . 322
10.6 Some Applications of Euclidean Geometry . . . . . . . . . . . . . . . . . . . 326
10.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327
11 QR-Decomposition for Arbitrary Matrices 329
11.1 Orthogonal Reflections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329
11.2 QR-Decomposition Using Householder Matrices . . . . . . . . . . . . . . . . 333
CONTENTS 5
11.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337
12 Basics of Affine Geometry 339
12.1 Affine Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339
12.2 Examples of Affine Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347
12.3 Chasles’s Identity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348
12.4 Affine Combinations, Barycenters . . . . . . . . . . . . . . . . . . . . . . . . 349
12.5 Affine Subspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353
12.6 Affine Independence and Affine Frames . . . . . . . . . . . . . . . . . . . . . 358
12.7 Affine Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363
12.8 Affine Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370
12.9 Affine Geometry: A Glimpse . . . . . . . . . . . . . . . . . . . . . . . . . . 372
12.10 Affine Hyperplanes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375
12.11 Intersection of Affine Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 377
13 Embedding an Affine Space in a Vector Space 381
13.1 The “Hat Construction,” or Homogenizing . . . . . . . . . . . . . . . . . . . 381
ˆ
13.2 Affine Frames of E and Bases of E . . . . . . . . . . . . . . . . . . . . . . . 388
ˆ
13.3 Another Construction of E . . . . . . . . . . . . . . . . . . . . . . . . . . . 390
13.4 Extending Affine Maps to Linear Maps . . . . . . . . . . . . . . . . . . . . . 393
14 Basics of Projective Geometry 399
14.1 Why Projective Spaces? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399
14.2 Projective Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404
14.3 Projective Subspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409
14.4 Projective Frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 412
14.5 Projective Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 426
14.6 Finding a Homography Between Two Projective Frames . . . . . . . . . . . 432
14.7 Affine Patches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445
14.8 Projective Completion of an Affine Space . . . . . . . . . . . . . . . . . . . 448
14.9 Making Good Use of Hyperplanes at Infinity . . . . . . . . . . . . . . . . . 453
14.10 The Cross-Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 456
14.11 Fixed Points of Homographies and Homologies . . . . . . . . . . . . . . . . 460
14.12 Duality in Projective Geometry . . . . . . . . . . . . . . . . . . . . . . . . . 474
14.13 Cross-Ratios of Hyperplanes . . . . . . . . . . . . . . . . . . . . . . . . . . . 478
14.14 Complexification of a Real Projective Space . . . . . . . . . . . . . . . . . . 480
14.15 Similarity Structures on a Projective Space . . . . . . . . . . . . . . . . . . 482
14.16 Some Applications of Projective Geometry . . . . . . . . . . . . . . . . . . . 491
15 The Cartan–Dieudonn´e Theorem 497
15.1 The Cartan–Dieudonn´e Theorem for Linear Isometries . . . . . . . . . . . . 497
15.2 Affine Isometries (Rigid Motions) . . . . . . . . . . . . . . . . . . . . . . . . 509
15.3 Fixed Points of Affine Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . 511
6 CONTENTS
15.4 Affine Isometries and Fixed Points . . . . . . . . . . . . . . . . . . . . . . . 513
15.5 The Cartan–Dieudonn´e Theorem for Affine Isometries . . . . . . . . . . . . 519
16 Hermitian Spaces 523
16.1 Hermitian Spaces, Pre-Hilbert Spaces . . . . . . . . . . . . . . . . . . . . . 523
16.2 Orthogonality, Duality, Adjoint of a Linear Map . . . . . . . . . . . . . . . 532
16.3 Linear Isometries (Also Called Unitary Transformations) . . . . . . . . . . . 537
16.4 The Unitary Group, Unitary Matrices . . . . . . . . . . . . . . . . . . . . . 539
16.5 Orthogonal Projections and Involutions . . . . . . . . . . . . . . . . . . . . 542
16.6 Dual Norms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 544
16.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 548
17 Isometries of Hermitian Spaces 551
17.1 The Cartan–Dieudonn´e Theorem, Hermitian Case . . . . . . . . . . . . . . . 551
17.2 Affine Isometries (Rigid Motions) . . . . . . . . . . . . . . . . . . . . . . . . 560
18 Spectral Theorems 565
18.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 565
18.2 Normal Linear Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 565
18.3 Self-Adjoint and Other Special Linear Maps . . . . . . . . . . . . . . . . . . 574
18.4 Normal and Other Special Matrices . . . . . . . . . . . . . . . . . . . . . . . 581
18.5 Conditioning of Eigenvalue Problems . . . . . . . . . . . . . . . . . . . . . . 584
18.6 Rayleigh Ratios and the Courant-Fischer Theorem . . . . . . . . . . . . . . 587
18.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 595
19 Introduction to The Finite Elements Method 597
19.1 A One-Dimensional Problem: Bending of a Beam . . . . . . . . . . . . . . . 597
19.2 A Two-Dimensional Problem: An Elastic Membrane . . . . . . . . . . . . . 607
19.3 Time-Dependent Boundary Problems . . . . . . . . . . . . . . . . . . . . . . 610
20 Singular Value Decomposition and Polar Form 619
20.1 Singular Value Decomposition for Square Matrices . . . . . . . . . . . . . . 619
20.2 Singular Value Decomposition for Rectangular Matrices . . . . . . . . . . . 627
20.3 Ky Fan Norms and Schatten Norms . . . . . . . . . . . . . . . . . . . . . . 630
20.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 631
21 Applications of SVD and Pseudo-Inverses 633
21.1 Least Squares Problems and the Pseudo-Inverse . . . . . . . . . . . . . . . . 633
21.2 Properties of the Pseudo-Inverse . . . . . . . . . . . . . . . . . . . . . . . . 638
21.3 Data Compression and SVD . . . . . . . . . . . . . . . . . . . . . . . . . . . 643
21.4 Principal Components Analysis (PCA) . . . . . . . . . . . . . . . . . . . . . 644
21.5 Best Affine Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . 651
21.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 654
CONTENTS 7
22 The Geometry of Bilinear Forms; Witt’s Theorem 657
22.1 Bilinear Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 657
22.2 Sesquilinear Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 665
22.3 Orthogonality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 669
22.4 Adjoint of a Linear Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 674
22.5 Isometries Associated with Sesquilinear Forms . . . . . . . . . . . . . . . . . 676
22.6 Totally Isotropic Subspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 680
22.7 Witt Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 686
22.8 Symplectic Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 694
22.9 Orthogonal Groups and the Cartan–Dieudonn´e Theorem . . . . . . . . . . . 698
22.10 Witt’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 705
23 Polynomials, Ideals and PID’s 711
23.1 Multisets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 711
23.2 Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 712
23.3 Euclidean Division of Polynomials . . . . . . . . . . . . . . . . . . . . . . . 718
23.4 Ideals, PID’s, and Greatest Common Divisors . . . . . . . . . . . . . . . . . 720
23.5 Factorization and Irreducible Factors in K[X] . . . . . . . . . . . . . . . . . 728
23.6 Roots of Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 732
23.7 Polynomial Interpolation (Lagrange, Newton, Hermite) . . . . . . . . . . . . 739
24 Annihilating Polynomials; Primary Decomposition 747
24.1 Annihilating Polynomials and the Minimal Polynomial . . . . . . . . . . . . 747
24.2 Minimal Polynomials of Diagonalizable Linear Maps . . . . . . . . . . . . . 749
24.3 The Primary Decomposition Theorem . . . . . . . . . . . . . . . . . . . . . 755
24.4 Nilpotent Linear Maps and Jordan Form . . . . . . . . . . . . . . . . . . . . 764
25 UFD’s, Noetherian Rings, Hilbert’s Basis Theorem 771
25.1 Unique Factorization Domains (Factorial Rings) . . . . . . . . . . . . . . . . 771
25.2 The Chinese Remainder Theorem . . . . . . . . . . . . . . . . . . . . . . . . 785
25.3 Noetherian Rings and Hilbert’s Basis Theorem . . . . . . . . . . . . . . . . 791
25.4 Futher Readings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 795
26 Tensor Algebras and Symmetric Algebras 797
26.1 Linear Algebra Preliminaries: Dual Spaces and Pairings . . . . . . . . . . . 798
26.2 Tensors Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 803
26.3 Bases of Tensor Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . 814
26.4 Some Useful Isomorphisms for Tensor Products . . . . . . . . . . . . . . . . 816
26.5 Duality for Tensor Products . . . . . . . . . . . . . . . . . . . . . . . . . . . 820
26.6 Tensor Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 824
26.7 Symmetric Tensor Powers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 830
26.8 Bases of Symmetric Powers . . . . . . . . . . . . . . . . . . . . . . . . . . . 835
26.9 Some Useful Isomorphisms for Symmetric Powers . . . . . . . . . . . . . . . 838
8 CONTENTS
26.10 Duality for Symmetric Powers . . . . . . . . . . . . . . . . . . . . . . . . . . 838
26.11 Symmetric Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 841
27 Exterior Tensor Powers and Exterior Algebras 845
27.1 Exterior Tensor Powers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 845
27.2 Bases of Exterior Powers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 850
27.3 Some Useful Isomorphisms for Exterior Powers . . . . . . . . . . . . . . . . 853
27.4 Duality for Exterior Powers . . . . . . . . . . . . . . . . . . . . . . . . . . . 853
27.5 Exterior Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 856
27.6 The Hodge -Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 860
∗
(cid:126)
27.7 Left and Right Hooks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 863
(cid:126)
27.8 Testing Decomposability . . . . . . . . . . . . . . . . . . . . . . . . . . . 872
(cid:126)
27.9 The Grassmann-Plu¨cker’s Equations and Grassmannians . . . . . . . . . 875
27.10 Vector-Valued Alternating Forms . . . . . . . . . . . . . . . . . . . . . . . . 879
28 Introduction to Modules; Modules over a PID 883
28.1 Modules over a Commutative Ring . . . . . . . . . . . . . . . . . . . . . . . 883
28.2 Finite Presentations of Modules . . . . . . . . . . . . . . . . . . . . . . . . . 892
28.3 Tensor Products of Modules over a Commutative Ring . . . . . . . . . . . . 898
28.4 Torsion Modules over a PID; Primary Decomposition . . . . . . . . . . . . . 901
28.5 Finitely Generated Modules over a PID . . . . . . . . . . . . . . . . . . . . 907
28.6 Extension of the Ring of Scalars . . . . . . . . . . . . . . . . . . . . . . . . 923
29 Normal Forms; The Rational Canonical Form 929
29.1 The Torsion Module Associated With An Endomorphism . . . . . . . . . . 929
29.2 The Rational Canonical Form . . . . . . . . . . . . . . . . . . . . . . . . . . 937
29.3 The Rational Canonical Form, Second Version . . . . . . . . . . . . . . . . . 944
29.4 The Jordan Form Revisited . . . . . . . . . . . . . . . . . . . . . . . . . . . 945
29.5 The Smith Normal Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 948
30 Topology 961
30.1 Metric Spaces and Normed Vector Spaces . . . . . . . . . . . . . . . . . . . 961
30.2 Topological Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 967
30.3 Continuous Functions, Limits . . . . . . . . . . . . . . . . . . . . . . . . . . 976
30.4 Connected Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 983
30.5 Compact Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 992
30.6 Sequential Compactness in Metric Spaces . . . . . . . . . . . . . . . . . . . 1003
30.7 Complete Metric Spaces and Compactness . . . . . . . . . . . . . . . . . . . 1011
30.8 The Contraction Mapping Theorem . . . . . . . . . . . . . . . . . . . . . . 1012
30.9 Continuous Linear and Multilinear Maps . . . . . . . . . . . . . . . . . . . . 1017
30.10 Normed Affine Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1022
30.11 Futher Readings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1022
CONTENTS 9
31 A Detour On Fractals 1023
31.1 Iterated Function Systems and Fractals . . . . . . . . . . . . . . . . . . . . 1023
32 Differential Calculus 1031
32.1 Directional Derivatives, Total Derivatives . . . . . . . . . . . . . . . . . . . 1031
32.2 Jacobian Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1045
32.3 The Implicit and The Inverse Function Theorems . . . . . . . . . . . . . . . 1053
32.4 Tangent Spaces and Differentials . . . . . . . . . . . . . . . . . . . . . . . . 1057
32.5 Second-Order and Higher-Order Derivatives . . . . . . . . . . . . . . . . . . 1058
32.6 Taylor’s formula, Faa` di Bruno’s formula . . . . . . . . . . . . . . . . . . . . 1063
32.7 Vector Fields, Covariant Derivatives, Lie Brackets . . . . . . . . . . . . . . . 1067
32.8 Futher Readings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1069
33 Quadratic Optimization Problems 1071
33.1 Quadratic Optimization: The Positive Definite Case . . . . . . . . . . . . . 1071
33.2 Quadratic Optimization: The General Case . . . . . . . . . . . . . . . . . . 1079
33.3 Maximizing a Quadratic Function on the Unit Sphere . . . . . . . . . . . . 1083
33.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1088
34 Schur Complements and Applications 1091
34.1 Schur Complements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1091
34.2 SPD Matrices and Schur Complements . . . . . . . . . . . . . . . . . . . . . 1093
34.3 SP Semidefinite Matrices and Schur Complements . . . . . . . . . . . . . . 1095
35 Convex Sets, Cones, -Polyhedra 1097
H
35.1 What is Linear Programming? . . . . . . . . . . . . . . . . . . . . . . . . . 1097
35.2 Affine Subsets, Convex Sets, Hyperplanes, Half-Spaces . . . . . . . . . . . . 1099
35.3 Cones, Polyhedral Cones, and -Polyhedra . . . . . . . . . . . . . . . . . . 1102
H
36 Linear Programs 1109
36.1 Linear Programs, Feasible Solutions, Optimal Solutions . . . . . . . . . . . 1109
36.2 Basic Feasible Solutions and Vertices . . . . . . . . . . . . . . . . . . . . . . 1115
37 The Simplex Algorithm 1123
37.1 The Idea Behind the Simplex Algorithm . . . . . . . . . . . . . . . . . . . . 1123
37.2 The Simplex Algorithm in General . . . . . . . . . . . . . . . . . . . . . . . 1132
37.3 How Perform a Pivoting Step Efficiently . . . . . . . . . . . . . . . . . . . . 1139
37.4 The Simplex Algorithm Using Tableaux . . . . . . . . . . . . . . . . . . . . 1142
37.5 Computational Efficiency of the Simplex Method . . . . . . . . . . . . . . . 1152
38 Linear Programming and Duality 1155
38.1 Variants of the Farkas Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . 1155
38.2 The Duality Theorem in Linear Programming . . . . . . . . . . . . . . . . . 1160
10 CONTENTS
38.3 Complementary Slackness Conditions . . . . . . . . . . . . . . . . . . . . . 1168
38.4 Duality for Linear Programs in Standard Form . . . . . . . . . . . . . . . . 1170
38.5 The Dual Simplex Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 1173
38.6 The Primal-Dual Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 1178
39 Extrema of Real-Valued Functions 1189
39.1 Local Extrema and Lagrange Multipliers . . . . . . . . . . . . . . . . . . . . 1189
39.2 Using Second Derivatives to Find Extrema . . . . . . . . . . . . . . . . . . . 1199
39.3 Using Convexity to Find Extrema . . . . . . . . . . . . . . . . . . . . . . . 1202
39.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1212
40 Newton’s Method and Its Generalizations 1213
40.1 Newton’s Method for Real Functions of a Real Argument . . . . . . . . . . 1213
40.2 Generalizations of Newton’s Method . . . . . . . . . . . . . . . . . . . . . . 1214
40.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1220
41 Basics of Hilbert Spaces 1221
41.1 The Projection Lemma, Duality . . . . . . . . . . . . . . . . . . . . . . . . 1221
41.2 Farkas–Minkowski Lemma in Hilbert Spaces . . . . . . . . . . . . . . . . . . 1238
42 General Results of Optimization Theory 1241
42.1 Existence of Solutions of an Optimization Problem . . . . . . . . . . . . . . 1241
42.2 Gradient Descent Methods for Unconstrained Problems . . . . . . . . . . . 1255
42.3 Conjugate Gradient Methods for Unconstrained Problems . . . . . . . . . . 1271
42.4 Gradient Projection for Constrained Optimization . . . . . . . . . . . . . . 1281
42.5 Penalty Methods for Constrained Optimization . . . . . . . . . . . . . . . . 1284
42.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1286
43 Introduction to Nonlinear Optimization 1287
43.1 The Cone of Feasible Directions . . . . . . . . . . . . . . . . . . . . . . . . . 1287
43.2 The Karush–Kuhn–Tucker Conditions . . . . . . . . . . . . . . . . . . . . . 1301
43.3 Hard Margin Support Vector Machine . . . . . . . . . . . . . . . . . . . . . 1311
43.4 Lagrangian Duality and Saddle Points . . . . . . . . . . . . . . . . . . . . . 1322
43.5 Uzawa’s Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1338
43.6 Handling Equality Constraints Explicitly . . . . . . . . . . . . . . . . . . . . 1343
43.7 Conjugate Function and Legendre Dual Function . . . . . . . . . . . . . . . 1351
43.8 Some Techniques to Obtain a More Useful Dual Program . . . . . . . . . . 1361
43.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1370
44 Soft Margin Support Vector Machines 1373
44.1 Soft Margin Support Vector Machines; (SVM ) . . . . . . . . . . . . . . . . 1374
s1
44.2 Soft Margin Support Vector Machines; (SVM ) . . . . . . . . . . . . . . . . 1383
s2
44.3 Soft Margin Support Vector Machines; (SVM ) . . . . . . . . . . . . . . . 1389
s2(cid:48)
Description:Algebra, Topology, Differential Calculus, and. Optimization Theory. For Computer Science and Engineering. Jean Gallier and 126. 4.4 Transpose of a Linear Map and of a Matrix 127. 4.5 The Four Fundamental Subspaces 12 Basics of Affine Geometry. 339. 12.1 Affine Spaces .