Table Of ContentAdvancedMultilevelConvertersand
ApplicationsinGridIntegration
Advanced Multilevel Converters and
Applications in Grid Integration
Editedby
AliI.Maswood
NanyangTechnologicalUniversity
Singapore
HosseinDehghaniTafti
NanyangTechnologicalUniversity
Singapore
Thiseditionfirstpublished2019
©2019JohnWiley&SonsLtd
Allrightsreserved.Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,or
transmitted,inanyformorbyanymeans,electronic,mechanical,photocopying,recording,orotherwise,
exceptaspermittedbylaw.Adviceonhowtoobtainpermissiontoreusematerialfromthistitleisavailable
athttp://www.wiley.com/go/permissions.
TherightofAliI.MaswoodandHosseinDehghaniTaftitobeidentifiedastheauthorsoftheeditorial
materialinthisworkhasbeenassertedinaccordancewithlaw.
RegisteredOffices
JohnWiley&Sons,Inc.,111RiverStreet,Hoboken,NJ07030,USA
JohnWiley&SonsLtd,TheAtrium,SouthernGate,Chichester,WestSussex,PO198SQ,UK
EditorialOffice
TheAtrium,SouthernGate,Chichester,WestSussex,PO198SQ,UK
Fordetailsofourglobaleditorialoffices,customerservices,andmoreinformationaboutWileyproducts,
visitusatwww.wiley.com.
Wileyalsopublishesitsbooksinavarietyofelectronicformatsandbyprint-on-demand.Somecontentthat
appearsinstandardprintversionsofthisbookmaynotbeavailableinotherformats.
LimitofLiability/DisclaimerofWarranty
®
MATLAB isatrademarkofTheMathWorks,Inc.andisusedwithpermission.TheMathWorksdoesnot
®
warranttheaccuracyofthetextorexercisesinthisbook.Thiswork’suseordiscussionofMATLAB
softwareorrelatedproductsdoesnotconstituteendorsementorsponsorshipbyTheMathWorksofa
®
particularpedagogicalapproachorparticularuseoftheMATLAB software.
Whilethepublisherandauthorshaveusedtheirbesteffortsinpreparingthiswork,theymakeno
representationsorwarrantieswithrespecttotheaccuracyorcompletenessofthecontentsofthisworkand
specificallydisclaimallwarranties,includingwithoutlimitationanyimpliedwarrantiesofmerchantabilityor
fitnessforaparticularpurpose.Nowarrantymaybecreatedorextendedbysalesrepresentatives,written
salesmaterialsorpromotionalstatementsforthiswork.Thefactthatanorganization,website,orproductis
referredtointhisworkasacitationand/orpotentialsourceoffurtherinformationdoesnotmeanthatthe
publisherandauthorsendorsetheinformationorservicestheorganization,website,orproductmayprovide
orrecommendationsitmaymake.Thisworkissoldwiththeunderstandingthatthepublisherisnotengaged
inrenderingprofessionalservices.Theadviceandstrategiescontainedhereinmaynotbesuitableforyour
situation.Youshouldconsultwithaspecialistwhereappropriate.Further,readersshouldbeawarethat
websiteslistedinthisworkmayhavechangedordisappearedbetweenwhenthisworkwaswrittenandwhen
itisread.Neitherthepublishernorauthorsshallbeliableforanylossofprofitoranyothercommercial
damages,includingbutnotlimitedtospecial,incidental,consequential,orotherdamages.
LibraryofCongressCataloging-in-PublicationData
Names:Maswood,AliI.,1957-editor.|Tafti,HosseinDehghani,1987-
editor.
Title:Advancedmultilevelconvertersandapplicationsingridintegration/
editedbyAliI.Maswood,HosseinDehghaniTafti.
Description:Hoboken,NJ:JohnWiley&Sons,2019.|Includes
bibliographicalreferencesandindex.|
Identifiers:LCCN2018023735(print)|LCCN2018033627(ebook)|ISBN
9781119476016(AdobePDF)|ISBN9781119475897(ePub)|ISBN9781119475866
(hardcover)
Subjects:LCSH:Electriccurrentconverters.|Electriccurrentrectifiers.
Classification:LCCTK7872.C8(ebook)|LCCTK7872.C8A482019(print)|DDC
621.381/3–dc23
LCrecordavailableathttps://lccn.loc.gov/2018023735
CoverDesign:Wiley
CoverImage:©LeonidKatsyka/Shutterstock
Setin10/12ptWarnockProbySPiGlobal,Chennai,India
10 9 8 7 6 5 4 3 2 1
Thisbookisdedicatedtoourfamiliesandparents.
vii
Contents
ListofContributors xv
Preface xvii
PartI AreviewonClassicalMultilevelConverters 1
1 ClassicalMultilevelConverters 3
GabrielH.P.Ooi,ZiyouLim,andHosseinDehghaniTafti
1.1 Introduction 3
1.2 ClassicalTwo-LevelConverters 3
1.3 TheNeedforMultilevelConverters 4
1.4 ClassicalMultilevelConverters 5
1.4.1 MultilevelDiodeClampedConverters 5
1.4.2 MultilevelFlyingCapacitorConverter 7
1.4.3 MultilevelCascadedH-BridgeConverter 8
1.4.4 ModularMultilevelConverter 9
1.4.5 MultilevelActiveNeutralPointClampedInverter 11
1.5 MultilevelApplicationsandFutureTrends 12
References 14
2 MultilevelModulationMethods 17
ZiyouLim,HosseinDehghaniTafti,andHarikrishnaR.Pinkymol
2.1 Introduction 17
2.2 Carrier-BasedSinusoidalPulse-WidthModulationMethods 19
2.2.1 OperationPrinciples 19
2.2.2 LimitationsofSinusoidalPulse-WidthModulationinMultilevel
Converters 20
2.2.3 PerformancesofLevel-ShiftedPWMandPhase-ShiftedPWM 20
2.3 SpaceVectorModulation(SVM) 24
2.4 Summary 27
References 28
3 MathematicalModelingofClassicalThree-LevelConverters 29
GabrielH.P.Ooi
3.1 Introduction 29
viii Contents
3.2 Three-LevelDiode-ClampedInverterTopology 29
3.3 Three-LevelFlying-CapacitorInverterTopology 38
3.4 Summary 44
References 44
4 VoltageBalancingMethodsforClassicalMultilevelConverters 45
GabrielH.P.Ooi,HosseinDehghaniTafti,andHarikrishnaR.Pinkymol
4.1 Introduction 45
4.2 ActiveBalancingbyAddingdcOffsetVoltagetoModulating
Signals 45
4.3 MeasurementResultsfordcOffsetModulationControl 47
4.4 NaturalBalancingbyusingStarConnectedRCFilter 49
4.5 MeasurementResultsfortheNaturalBalancingMethod 59
4.6 SpaceVectorModulationwiththeSelf-BalancingTechnique 59
4.7 Summary 61
References 63
PartII AdvancedMultilevelRectifiersandtheirControl
Strategies 65
5 UnidirectionalThree-PhaseThree-LevelUnity-PowerFactor
Rectifier 67
GabrielH.P.OoiandHosseinDehghaniTafti
5.1 Introduction 67
5.2 CircuitConfiguration 67
5.3 ProposedControllerScheme 70
5.3.1 dc-LinkVoltageControl 72
5.3.2 CurrentControl 75
5.3.3 Validation 76
5.4 ExperimentalVerification 80
5.5 Summary 86
References 86
6 BidirectionalandUnidirectionalFive-LevelMultiple-PoleMultilevel
Rectifiers 89
GabrielH.P.Ooi
6.1 Introduction 89
6.2 CircuitConfiguration 89
6.2.1 BidirectionalFront-EndFive-Level/Multiple-PoleMultilevelDiode-Clamped
Rectifier 90
6.2.2 UnidirectionalFront-EndFive-Level/Multiple-PoleMultilevel
Switch-ClampedRectifier 90
6.3 ModulationScheme 91
6.4 DesignConsiderations 93
6.4.1 DeviceVoltageStresses 94
6.4.2 DeviceCurrentStresses 94
Contents ix
6.5 ComparativeEvaluation 95
6.5.1 InputCurrentShaping 95
6.5.2 ComponentsCount 100
6.6 ControlStrategy 101
6.7 ExperimentalVerification 103
6.8 Summary 105
References 105
7 Five-LevelMultiple-PoleMultilevelViennaRectifier 107
GabrielH.P.OoiandAliI.Maswood
7.1 Introduction 107
7.2 OperatingPrinciple 108
7.3 DesignConsiderations 110
7.3.1 DeviceCurrentStress 110
7.3.2 DeviceVoltageStress 111
7.4 ControlStrategy 112
7.4.1 PowerBalancePrinciple 112
7.4.2 dc-LinkVoltageControl 113
7.4.3 CurrentControl 113
7.5 Validation 115
7.6 Summary 116
References 117
8 Five-LevelMultiple-PoleMultilevelRectifierwithReduced
Components 119
GabrielH.P.Ooi
8.1 Introduction 119
8.2 OperationPrinciple 120
8.3 ModulationScheme 122
8.4 ControlStrategy 123
8.4.1 UnityPowerFactorControl 123
8.4.2 VoltageControl 125
8.4.3 CurrentControl 127
8.4.4 GridVoltageObserver 127
8.5 DesignConsiderations 128
8.5.1 DeviceCurrentStresses 129
8.5.2 DeviceVoltageStress 130
8.6 Validation 131
8.7 ExperimentalVerification 131
8.8 Summary 132
References 134
9 Four-QuadrantReducedModularCellRectifier 137
ZiyouLim
9.1 Introduction 137
9.2 CircuitConfiguration 139
9.3 OperatingPrinciple 139
x Contents
9.4 DesignConsiderations 141
9.4.1 DevicesVoltageStress 142
9.4.2 VoltageStressAnalysis 142
9.4.3 DesignofInputInductors 143
9.4.4 DesignofFlyingCapacitors 144
9.5 ControlStrategy 144
9.5.1 Synchronous-Reference-FrameCurrentControl 145
9.5.2 FlyingCapacitorVoltageBalancingControl 146
9.5.3 HybridCarrier-BasedPulse-WidthModulation
Schemes 147
9.6 ComparativeEvaluationofClassicalMFCRand
ProposedRFCR 148
9.6.1 InputCurrentShapingPerformance 148
9.6.2 PowerSemiconductorDeviceLosses 148
9.7 ExperimentalVerification 149
References 160
PartIII AdvancedMultilevelInvertersandtheirControl
Strategies 163
10 TransformerlessFive-Level/Multiple-PoleMultilevelInverterswith
SingleDCBusConfiguration 165
GabrielH.P.Ooi
10.1 Introduction 165
10.2 Five-LevelMultiple-PoleConcept 166
10.3 CircuitConfigurationandOperationPrinciples 167
10.3.1 Five-Level/MultilevelDiode-ClampedInverter(5L-MDCI) 167
10.3.2 Five-Level/Multiple-PoleMultilevelDiode-ClampedInverter
(5L-M2DCI) 168
10.3.3 Five-Level/Multiple-PoleMultilevelT-Type-ClampedInverter
(5L-M2T2CI) 170
10.3.4 Five-Level/Multiple-PoleMultilevelSingle-Switch-ClampedInverter
(5L-M2S2CI) 175
10.4 ModulationScheme 176
10.5 DesignConsideration 176
10.5.1 DeviceVoltageStress 178
10.5.2 DevicesCurrentStress 178
10.6 AccuracyoftheCurrentStressCalculation 184
10.7 LossesinPowerDevices 189
10.7.1 ConductionLossinPowerDevices 189
10.7.2 SwitchingLossinPowerDevices 190
10.7.3 DistributionofPowerLossinDevices 191
10.7.4 CostOverview 194
10.7.5 MeasuredResults 195
10.8 Discussion 197
References 199
Contents xi
11 TransformerlessSeven-Level/Multiple-PoleMultilevelInverterswith
Single-InputMultiple-Output(SIMO)BalancingCircuit 201
HosseinDehghaniTaftiandGabrielH.P.Ooi
11.1 Introduction 201
11.2 CircuitConfigurationandOperatingPrinciples 201
11.2.1 Seven-Level/Multiple-PoleMultilevelDiode-ClampedInverter
(7L-M2DCI) 202
11.2.2 Seven-Level/Active-ClampedMultiple-PoleMultilevelDiode-Clamped
Inverter(7L-AM2DCI) 204
11.3 SIMOVoltageBalancingCircuit 204
11.4 DesignConsiderations 208
11.4.1 VoltageStressonSeven-Level/Multiple-PoleMultilevelDiode-Clamped
Inverter 208
11.4.2 VoltageStressonSeven-Level/Active-ClampedMultiple-PoleMultilevel
Diode-ClampedInverter 210
11.4.3 VoltageStressontheSIMOVoltageBalancingCircuit 212
11.5 ExperimentalVerification 212
11.6 Summary 215
References 215
12 Three-PhaseSeven-LevelThree-CellLightweightFlyingCapacitor
Inverter 217
ZiyouLim
12.1 Introduction 217
12.2 LFCITopology 219
12.3 CircuitConfiguration 220
12.4 OperationalPrinciples 220
12.5 ModulationScheme 228
12.6 DesignConsiderations 230
12.7 HarmonicCharacteristics 234
12.7.1 PSC-POD-PWM 234
12.7.2 PSCPhase-DispositionPWM(PSC-PD-PWM) 239
12.8 ExperimentalVerification 247
References 250
13 Three-PhaseSeven-LevelFour-CellReducedFlyingCapacitor
Inverter 251
ZiyouLim
13.1 Introduction 251
13.2 CircuitConfiguration 251
13.3 OperationPrinciples 252
13.4 DesignConsiderations 254
13.4.1 VoltageCharacteristicsExpressions 254
13.4.2 DesignofFlyingCapacitors 256
13.4.3 ExperimentalVerification 258
13.5 FlyingCapacitorVoltageBalancingControl 259
13.6 ExperimentalVerification 264
xii Contents
14 ActiveNeutral-Point-ClampedInverter 275
ZiyouLim
14.1 Introduction 275
14.2 CircuitConfiguration 277
14.3 OperatingPrinciples 277
14.4 DesignConsiderations 279
14.5 MultipleVoltageQuantitiesEnhancementControl 280
14.5.1 dc-LinkNeutralPointOffsetRegulator 280
14.5.2 Feedforwarddc-LinkRippleCompensation 283
14.5.3 FlyingCapacitorVoltageBalancingControl 284
14.5.4 InterleavedSawtoothCarrierPhase-DispositionPWM 286
14.5.5 HarmonicCharacteristicsofProposedHybridISC-PD-PWM 289
14.5.6 ExperimentalVerification 295
14.6 CommonModeReduction 298
14.6.1 VectorEquivalenceMapping 302
14.6.2 SpectralHarmonicCharacteristics 307
14.6.3 SwitchingFrequencyReduction 309
14.6.4 PowerDeviceLosses 310
14.6.5 ExperimentalVerification 312
References 316
15 MultilevelZ-SourceInverters 319
MuhammadM.Roomi
15.1 Introduction 319
15.2 Two-LevelZSI 321
15.3 Three-LevelZSI 324
15.3.1 Three-LevelSingleZ-SourceNetworkwithNeutralPointConnectedto
SplitCapacitorBankInverter 324
15.3.2 Three-LevelSingleZ-SourceNetworkwithNeutralPointConnectedto
SplitInputdcSourceInverter 328
15.3.3 Three-LevelDualZ-SourceNPCInverter 331
15.4 ModulationMethodsforThree-LevelZ-SourceNPCInverter 332
15.4.1 PhaseOppositionDispositionModulationMethod 333
15.4.2 In-PhaseDisposition(I-PD)ModulationMethod 334
15.5 ModulationMethodforThree-LevelDualZ-SourceNPCInverter 335
15.5.1 ReferenceDispositionLevel-ShiftedPWMMethod 336
15.5.2 SwitchingStates 340
15.5.3 Validation 341
15.6 ReferenceDispositionLevel-ShiftedPWMforNon-idealDualZ-Source
NetworkNPCInverter 350
15.6.1 Non-idealCircuitTopology 350
15.6.2 CircuitAnalysis 351
15.6.3 SwitchingStates 352
15.6.4 Validation 353
15.6.5 ExperimentalVerification 357
15.7 ApplicationsofZSI 363
15.8 Summary 365
References 367