Table Of ContentAuthors Consultants Advisors
Wayne Erdman Assessment Consultant Kirsten Boucher
B.Math., B.Ed. Jacqueline Hill Durham District School Board
Toronto District School Board Durham District School Board Karen Frazer
Ottawa-Carleton District School Board
Antonietta Lenjosek
Technology Consultant
B.Sc., B.Ed. Janine LeBlanc
Dan Ciarmoli
Ottawa Catholic School Board Whitby, Ontario
Hamilton-Wentworth District
Roland W. Meisel School Board Anthony Silva
B.Sc., B.Ed., M.Sc. York Region District School Board
Port Colborne, Ontario Mathematical Processes Consultant Ken Stewart
Susan Siskind York Region District School Board
Jacob Speijer
Toronto, Ontario
B.Eng., M.Sc.Ed., P.Eng.
District School Board of Niagara Advisory Panel
Pedagogical Consultants
Wayne Erdman Derrick Driscoll
Contributing Authors Toronto District School Board Thames Valley District School Board
Larry Romano Roxanne Evans
Kirsten Boucher Toronto Catholic District School Board Algonquin and Lakeshore Catholic
Durham District School Board
District School Board
Dan Ciarmoli Senior Advisors Honi Huyck
Hamilton-Wentworth District Belle River, Ontario
School Board
John Santarelli Jeff Irvine
Patrick Grew Stoney Creek, Ontario Peel District School Board
Limestone District School Board Laura Tonin Colleen Morgulis
District School Board of Niagara Durham Catholic District School Board
Jeff Irvine
Peel District School Board Paula Thiessen Terry Paradellis
District School Board of Niagara Toronto District School Board
Atul Kotecha
Barbara Vukets
Limestone District School Board
Waterloo Region District School Board
Toronto • Montréal • Boston • Burr Ridge, IL • Dubuque, IA • Madison, WI • New York • San Francisco
St. Louis • Bangkok • Bogotá • Caracas • Kuala Lumpur • Lisbon • London • Madrid • Mexico City
Milan • New Delhi • Santiago • Seoul • Singapore • Sydney • Taipei
McGraw-Hill Ryerson Limited
COPIES OF THIS BOOK McGraw-Hill Ryerson
MAY BE OBTAINED BY Advanced Functions 12
CONTACTING:
Copyright © 2008, McGraw-Hill Ryerson Limited, a Subsidiary of The McGraw-Hill
McGraw-Hill Ryerson Ltd.
Companies. All rights reserved. No part of this publication may be reproduced or
transmitted in any form or by any means, or stored in a database or retrieval system,
E-MAIL:
without the prior written permission of McGraw-Hill Ryerson Limited, or, in the case
[email protected]
of photocopying or other reprographic copying, a licence from the Canadian Copyright
Licensing Agency (Access Copyright). For an Access Copyright licence, call toll free to
TOLL-FREE FAX: 1-800-893-5777.
1-800-463-5885
Any request for photocopying, recording, or taping of this publication shall be directed
in writing to Access Copyright.
TOLL-FREE CALL:
1-800-565-5758 ISBN 10: 0-07-026636-0
ISBN 13: 978-0-07-026636-0
OR BY MAILING YOUR
5 6 7 8 9 0 TCP 1 7 6 5 4 3 2 1 0
ORDER TO:
McGraw-Hill Ryerson Printed and bound in Canada.
Order Department
Care has been taken to trace ownership of copyright material contained in this text. The
300 Water Street
publishers will gladly take any information that will enable them to rectify any reference
Whitby, ON L1N 9B6
or credit in subsequent printings.
Please quote the ISBN and
The information and activities in this textbook have been carefully developed and reviewed
title when placing your order.
by professionals to ensure safety and accuracy. However, the publisher shall not be liable for
any damages resulting, in whole or in part, from the reader’s use of the material. The safety
of students remains the responsibility of the classroom teacher, the principal, and the school
board district.
The Geometer’s Sketchpad® and Fathom Dynamic Statistics™ Software, Key Curriculum
Press, 1150 65th Street, Emeryville, CA 94608, 1-800-995-MATH.
Statistics Canada information is used with the permission of Statistics Canada. Users are
forbidden to copy the data and redisseminate them, in an original or modifi ed form, for
commercial purposes, without permission from Statistics Canada. Information on the
availability of the wide range of data from Statistics Canada can be obtained from Statistics
Canada’s Regional Offi ce, its World Wide Web site, and its toll-free access number
1-800-263-1136.
PUBLISHER: Linda Allison
ASSOCIATE PUBLISHER: Kristi Clark
PROJECT MANAGERS: Maggie Cheverie, Janice Dyer
DEVELOPMENTAL EDITORS: Richard Dupuis, Jackie Lacoursiere, Darren McDonald, Winnie Siu
MANAGER, EDITORIAL SERVICES: Crystal Shortt
SUPERVISING EDITOR: Shannon Martin
COPY EDITOR: Julia Cochrane
PHOTO RESEARCH/PERMISSIONS: Linda Tanaka
EDITORIAL ASSISTANT: Erin Hartley
ASSISTANT PROJECT COORDINATOR: Janie Reeson
MANAGER, PRODUCTION SERVICES: Yolanda Pigden
PRODUCTION COORDINATOR: Madeleine Harrington
COVER DESIGN: Valid Design
INTERIOR DESIGN: Michelle Losier
ELECTRONIC PAGE MAKE-UP: ArtPlus Limited
COVER IMAGE: Courtesy of Masterfi le
Acknowledgements
Reviewers of Advanced Functions 12
The publishers, authors, and editors of McGraw-Hill Ryerson Advanced Functions 12 wish to extend
their sincere thanks to the students, teachers, consultants, and reviewers who contributed their time,
energy, and expertise to the creation of this textbook. We are grateful for their thoughtful comments
and suggestions. This feedback has been invaluable in ensuring that the text and related teacher’s
resource meet the needs of students and teachers.
Tracey Angelini Alison Kennedy
Hamilton-Wentworth District School Board Halton District School Board
John A. Bradley Karen Kokoski
Ottawa Catholic District School Board Hamilton-Wentworth Catholic District
School Board
Dan Bruni
York Catholic District School Board Louis Lim
York Region District School Board
David Bukta
Upper Grand District School Board Steve Martinello
Peel District School Board
Anita Casella
Hamilton-Wentworth District School Board Susan Melville
Rainbow District School Board
Karen Coveney
Ottawa Catholic District School Board Janet Moir
Toronto Catholic District School Board
Emidio DiAntonio
Dufferin-Peel Catholic District School Board Leo Moscone
Windsor-Essex Catholic District School Board
John DiVizio
Durham Catholic District School Board Donald Mountain
Thames Valley District School Board
Doris Galea
Dufferin-Peel Catholic District School Board Andrezj Pienkowski
Toronto District School Board
Mark Gatti
York Region District School Board Rinaldo Schiabel
Toronto Catholic District School Board
Domenic Greto
York Catholic District School Board Antonio Stancati
Toronto Catholic District School Board
Raymond Ho
Durham District School Board Nancy Tsiobanos
Dufferin-Peel Catholic District School Board
Contents
Preface Chapter 3
Rational Functions 145
Chapter 1
Prerequisite Skills 146
Polynomial Functions 1
3.1 Reciprocal of a Linear Function 148
Prerequisite Skills 2
Extension: Asymptotes and the TI-83 Plus
1.1 Power Functions 4 or TI-84 Plus Graphing Calculator 156
1.2 Characteristics of Polynomial 3.2 Reciprocal of a Quadratic Function 157
Functions 15
3.3 Rational Functions of the Form
1.3 Equations and Graphs of Polynomial f(x) (cid:2) _ax (cid:3)_ b 168
Functions 30 cx (cid:3) d
1.4 Transformations 42 3.4 Solve Rational Equations and
1.5 Slopes of Secants and Average Inequalities 177
Rate of Change 53 3.5 Making Connections With Rational
1.6 Slopes of Tangents and Instantaneous Functions and Equations 186
Rate of Change 65 Review 192
Review 74 Practice Test 194
Practice Test 78 Chapters 1 to 3 Review 196
Task: Create Your Own Water Park 80 Task: ZENN and Now 198
Chapter 2 Chapter 4
Polynomial Equations and Inequalities 81 Trigonometry 199
Prerequisite Skills 82 Prerequisite Skills 200
2.1 The Remainder Theorem 84 4.1 Radian Measure 202
2.2 The Factor Theorem 94 4.2 Trigonometric Ratios and Special Angles 211
2.3 Polynomial Equations 104 4.3 Equivalent Trigonometric Expressions 220
2.4 Families of Polynomial Functions 113 4.4 Compound Angle Formulas 228
2.5 Solve Inequalities Using Technology 123 4.5 Prove Trigonometric Identities 236
2.6 Solve Factorable Polynomial Extension: Use The Geometer’s Sketchpad®
Inequalities Algebraically 132 to Sketch and Manipulate Three-Dimensional
Review 140 Structures in a Two-Dimensional
Representation 242
Practice Test 142
Review 244
Task: Can You Tell Just by Looking? 144
Practice Test 246
Task: Make Your Own Identity 248
iv MHR • Advanced Functions • Contents
Chapter 5 Chapter 7
Trigonometric Functions 249 Tools and Strategies for Solving
Prerequisite Skills 250 Exponential and Logarithmic Equations 361
5.1 Graphs of Sine, Cosine, and Tangent Prerequisite Skills 362
Functions 252 7.1 Equivalent Forms of Exponential
5.2 Graphs of Reciprocal Trigonometric Equations 364
Functions 261 7.2 Techniques for Solving Exponential
5.3 Sinusoidal Functions of the Form Equations 370
f(x) (cid:2) a sin [k(x (cid:4) d)] (cid:3) c and 7.3 Product and Quotient Laws of
f(x) (cid:2) a cos [k(x (cid:4) d)] (cid:3) c 270 Logarithms 378
Extension: Use a Graphing Calculator 7.4 Techniques for Solving Logarithmic
to Fit a Sinusoidal Regression to Equations 387
Given Data 280
7.5 Making Connections: Mathematical
5.4 Solve Trigonometric Equations 282 Modelling With Exponential and
5.5 Making Connections and Instantaneous Logarithmic Equations 393
Rate of Change 290 Review 408
Review 300 Practice Test 410
Practice Test 302 Task: Make Your Own Slide Rule 412
Chapters 4 and 5 Review 304
Task: Predators and Prey 306 Chapter 8
Combining Functions 413
Chapter 6 Prerequisite Skills 414
Exponential and Logarithmic Functions 307 8.1 Sums and Differences of Functions 416
Prerequisite Skills 308 8.2 Products and Quotients of Functions 429
6.1 The Exponential Function and 8.3 Composite Functions 439
Its Inverse 310
8.4 Inequalities of Combined Functions 450
6.2 Logarithms 323
8.5 Making Connections: Modelling
6.3 Transformations of Logarithmic With Combined Functions 461
Functions 331
Review 472
6.4 Power Law of Logarithms 341 Practice Test 474
6.5 Making Connections: Logarithmic Chapters 6 to 8 Review 476
Scales in the Physical Sciences 349 Task: Modelling a Damped Pendulum 478
Review 356 Course Review 479
Practice Test 358
Prerequisite Skills Appendix 484
Task: Not Fatal 360
Technology Appendix 505
Answers 524
Glossary 586
Index 595
Credits 600
Contents • MHR v
Preface
McGraw-Hill Ryerson Advanced Functions 12 is designed for students planning
to qualify for college or university. The book introduces new mathematical
principles while providing a wide variety of applications linking the
mathematical theory to real situations and careers.
Text Organization
Chapter 1 generalizes concepts of polynomial functions and introduces the
process of using secants and tangents to analyse rates of change. These concepts
are then integrated as appropriate throughout other chapters of the text.
In Chapter 2, you will combine your equation-solving skills with principles
of polynomial functions to solve polynomial equations and inequalities.
Chapter 3 focuses on properties of rational functions.
Chapter 4 extends your understanding of trigonometry by defi ning
trigonometric ratios of any angle using radians for angle measure. These
concepts are then used in Chapter 5 to analyse trigonometric functions.
Chapters 6 and 7 provide opportunities for you to explore and apply
concepts of exponents and logarithms. In Chapter 8, concepts from all
seven preceding chapters are integrated in the topic of combining functions.
Mathematical Processes
Reasoning and Proving This text integrates the seven mathematical processes: problem solving,
Representing Selecting Tools reasoning and proving, refl ecting, selecting tools and computational
Problem Solving strategies, connecting, representing, and communicating. These processes
Connecting Reflecting are interconnected and are used throughout the course. Some examples
Communicating and exercises are fl agged with a mathematical processes graphic to show
you which processes are involved in solving the problem.
Chapter Features
The Chapter Opener introduces what you will learn in the chapters. It
includes a list of the specifi c curriculum expectations that the chapter covers.
Prerequisite Skills reviews key skills from previous mathematical courses
and previous chapters in this book that are needed to be successful with the
current chapter. Examples and further practice are given in the Prerequisite
Skills Appendix on pages 484 to 504. The Chapter Problem is introduced
at the end of the Prerequisite Skills. Questions related to this problem are
identifi ed in the exercises, and the Chapter Problem Wrap-Up is found at
the end of the Chapter Review.
vi MHR • Advanced Functions • Preface
Prerequisite Skills 9. a) Use a unit circle, similar to the one shown, to Distance Between Two Points
P 213ri...m UeedAftUtdaabcegaccaoho)))aa)))))))eRCrC nss a rre Aecccteetsssctcsstty c i ShhOioheaaaa eiiiiioooTm stannnnnlT xa nnnle htsssvt a t rNhch ax1θ3xarr hcθ71xxeaneioihacglae 50 w lg p55t(cid:2) e(cid:2)(cid:2)NtC(cid:2) ru (cid:2)(cid:2)lpo°2otso aa°7ch sve wAlt ° ienunnrE °ta(cid:4)_0w.a35 (cid:4)ih_8e1m vlogoSc5li.TeasCc.,u3oe6l_Tem1 hm3t_2item8hn0es 75o,7t4 .Tdp 4.ero eer °e ir2frga6D,terun ,yoI cto≤ri7g t1hl,drnm9rieOo e r0cieoq8 θut0c evam uea°t 0idrsN ea°c ≤oreRreaetd≤°.etmy r≤ rr att9Sai dia≤ ciθe ngtit o0xe t nrir bdfhdboc.xo≤t,°m i))))))e a≤en g rs ≤rl3cscctc iooto c1mnaai hoooo6mnuun2n8enesssst0ioln 7a 1 0en a523xxda°snemd0t0i°etT645nSgx nroe(cid:2)(cid:2)°t 0eeie°08gtahdcnrt°hl°°c rt eey(cid:4)r_t01etti5 oa o c 2Cxv0st i,reiafA.cgo ao4vlroSn utaoau5CAsiiTl sielourlnou s gesnRf a.xi oduvtfeeel e dn E 5678x....a cAretUrUtUdacdabcdefghabcdbtroaa)))x))))))))))))e) nisss Ttt agteeetccccsccsccscscssii erocoohe eeeeeesossosossoiraaatgxcccccccccccc n,emtttt pi avoxθθ321133xxxccsorx22xnpi ocaaa512425mn52nge(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)r(cid:2)(cid:2)tlllu°62215°3aio euccoevvn °°°°° uur °epmt(cid:4)(cid:4)1ee__(cid:4)3_a11154edrsll7rxn.laas.i322 eei,12u_1c11_ota2 ttad 7ft, 0.5eoo475cfd4tro3r 2e°trrt1aifte,r2, oc 7oht6vg ≤tts1 9ie oo0repRarof8a0 x eo °leaasoedc0ue°cu.t ≤vh≤t.e°eriir≤haa ot se θ≤a9ee lldcsxfu rn r0ir≤e oθmp oagi°c≤t rgrt3w≤lfii eeohm nt1 6S .ho2ctee 80pa Dea 7 at0r°lae lr0c epe °nipchtc°tarrgliei inaaiptlmrgregclmr oi elAaogxensirconns,.yo a negrt mlo oo lteu hemstnere ditcre idc 10CHAPTER. bcEyt)r)o x iPgutrwoCdouofDUeo oednfefsfRnWoetdtpsriepr itteoheed4ttnotn nerreh(cid:4)t thhae eeO5otmrghgthe tyhrteeh1sme pr° oeipemaoae teeernm.o st h n teuiBn atrmleitiLiens rpedetrin nrrhdgiPe nireac d mie acet(Leileadro insebx gse e npt(cid:4)xPi ol riie, heehn fi ieanroElaaa(xy11o allgye0 eotxxggna vt)cft na n fntic carth,lt M=paeh octgg ra(cid:2)a d1imcb hyae trvliPelxvstlmttae e i)hre a a( eihame t lfccnsmp lsalnor xeootnpoi eu fgirsarfngestypkrr g otpiel ioar onpmn(cid:2)e4torg a s1ryr hnw,f em5gr ndnt dt1o3 oafsesdshoht°igeoioiis r 5oanrnr nttap bqlimyitri e°ahecofnea(cid:2)ght otul r,t.h (n)ean ehe to emwixwecst2etnnrm ds netsohrsfu2 i aitadt i oo lnfsde cinsan5lotoor om 4e r h eriida°ferrrft ntre5s ,ea el a hule p cciil thac°xt anrto9gheniroia,irdnaapnot rw ynaeiwinsect cvdrcnds p fioirt ollg enetnt aiy seeoor 3v n cln ehoan.yg4Pfsfeiaa1cg rcietnug 5 4ltlti5oahloo,u it oi °p5 otoh°ctmiefu)aos ° g.n. osns tn.n i h h nmtdtwaece m lbraaei. nl P T ony1111seTar1423 orndsiooh....t gf ? ibndet ooxUiUddEUixcabdabdcwA add-u))))enn))))ixr ssss (cid:2)e(cid:2)se(cid:2)calnaeee opEACG((((etnnlotrs2ac a gm dam( atatt((ioe11(√onfx(cid:4)hiiinn1(cid:4)(cid:3) (cid:4)(cid:3) ttn31fpocccfeetdyyd(cid:3)(0 x (cid:3) 8aae005ehx3sT tnt e,dbd ,llsthre,a°°, w2,e(cid:3)b ccs(cid:3)a 8)ii)i,,yr4nte (cid:4)acn((cid:4)iuus (cid:4)(eno) oh) xxgca)tdm t2a cll(I(cid:3) a3p a6awanend3x xaoB(cid:4)p(cid:2)(cid:2)x(cid:3)nsn) tt)i-exneseiiut oo1pl (cid:3)c(cid:2)(cid:3)rdnma r aao)deyndrer22sabl(cid:4)2 n nonn) i t edt)Bp03m(cid:3))Ftt(ce(cid:3)f_d cd ims goosolte(tt o02s2(oai i i6uhipe7nv D rf(cid:3)Hns°°eysin(vvtyn,mera2,,,.ey )sreex ( xg xn(x5ltlaa127iT(cid:3)perr3usol gi)nniia(cid:3)2e,r(cid:4)o(cid:2),nlihffp o acasdds)yy(cid:3)2i2g e nhi n t ct)yn1a)xx ttit roop(cid:3)a1hhops ngu)is(cid:2)(cid:2) mnaair 2s edi lytot ttn o o tt h )eafd33 otttrtoet iehhruu05 erraris deeec55ync gcce xe tr°° oqPhosfl.tta..oeueuy (cid:2)dnopcfrrtroeo t mtha ex t4 smia ifr i0eaog.(cid:2)nne° ore,tt r2 rteyh0a e°n,
Reciprocal Trigonometric Ratios trigonometric ratios. of the turn. The software designer employs
Note: If you have not worked with reciprocal (cid:2) sin (cid:2) cos (cid:2) tan (cid:2) trigonometry to realistically render a
trigonometric ratios before, refer to the a) 30° three-dimensional world onto a two-dimensional
P 4re. reDaq)e u2tiesrimtei nSke itblhl)se _13A repcpiepnrodcixac) lo o_35nf peaagche 4n8ud4m)._b√2e(cid:3)3 r. bc)) 4650°° ccpohromapbptleuemrt,e syr orseuclr aweteiinnll.g a Atposp ytlhyo eut r tiwrgaoonnrskop mothretrtaortuyio gtnho itsnhodilsvu es try.
200 MHR • Advanced Functions • Chapter 4 Prerequisite Skills • MHR 201
wnMehwainc hcyo nanluclomepwbtses .ry eModu as netocyt ciooofnn tssh tsertsuaecr tti nywvoieutshrti aguannt diIonernvsest saatnirgeda ibnteeg,s to f T•• o IcSgnookrmealvtpspchheupitnesagrdt wc®iaigltchua Tlahtteoe Gr ( eo1opm tieotnera’sl)W hat iAs : t1Nh. uae)m nCreaorotiopcumayrl e afAon xonrd fa t chltoyhrsmeeiesp :rm laAeottveere et r ohacyefgo elctu ahRmbaalnent esog. ofe fv Coalfhu aaesnn gf oeerx tphoe nfuenncttiioanl fyu(cid:2)nc 2txi.o Lne?ave
• grid paper 0 1
done using graphing calculators or dynamic geometry 1 2
2
software, but in most instances a choice of tools is given. 34
5
Worked Examples provide model solutions that show b) Descri6be any patterns you see in the values of y as x increases.
how the new concepts are used. They often include more
than one method, with and without technology. New
mathematical terms are highlighted and defi ned in context.
Refer to the Glossary on pages 586 to 594 for a full list of
defi nitions of mathematical terms used in the text.
The Key Concepts box summarizes the ideas in the lesson,
<< >>
and the Communicate Your Understanding questions allow KEY CONCEPTS
you to refl ect on the concepts of the section. ff((xg)( xd)e)p deenndost eosn a t hcoe mfupnocstiitoen f ugn(fx(cg)t(.ix oT)n)h, itsh caatn i sa, loson eb ein w wrihtticehn tahse ( ffu(cid:2)ngc)t(ixo)n.
f g
Exercises are organized into three sections: A: Practice, x g(x) f(g(x))
BAw:ni tCyh o qUnusneese tcTitoe ncahns ndth oAalotp grpeylqy.,u Mairneod st etC cCh: nEeoxxlteoergncydis teaosno edlns C da hrwea liiltdehen nagt eiffi.e ewd e tTfvhsT(oeaegoc l (euv oxdvaan)aetl)dutel,ue esfgra uum(itxnbnei)tsc n oattaeii ttoct u ahotntnhem e i e enep gqsqt(opouuxse aa)itc tthtfieiifioeoo fc rnnfiu vx rnofas ociftlnt r,uti oehaaf (sne axc rncof)e(o.dmagm d(tpxh pof)eor)sno isa timsettu e afb luf essunftptnict ecttucoittoii efiorn cint,gh vshaeuat nr.lbd ueTss etsou,ii t lmsudtu teipbentl estitoftrhyim te,fu ( ioxtner)e .
MTaastkhs Caoren tpersets qenuteesdti oant st hteo epnrdo voifd ee aecxht rcah cahpatellre. nTghee. se are CCC2o1 mfAtuDmo np ociurletlesiunodsfina(tcgtrsaoa (oxrtt-ef)ep .)t rYimmeoyee uar.nerl aUthtineo dsnasemhrisept taihsn isndhgoi anwsg nf.( xP)ogp(xu)l?a tEioxnp llaeivne,l su sairneg s ehxoawmnp aless
P
more involved problems that require you to use several
mice
concepts from the preceding chapters. Some tasks may cats
0
bEReae cvahise swcihg.na Cpedute mar sue nelaidtthsiv ewer iRitnhed vaiiv esiwedcust aioolc noc-rub rgy ra-osfetuecprti opCnrho aCjephctatesrp.st e3r, 5, C 3 baR)c) b )ae S)W)f JuePwWuIrgrhs shegt athdtoyeithaf si ytcdtitthsh tohay eiaw s oa tr r hsushmee tearvahaa setaabtyo nepnwl nreuhpsmi ewalrew lesvnf ehhlu eera3y.an dtCh pci toatt(phoitpnoee) ps nt nahfhe antiniepncod etc? doEta 2hE.rxtT e xaop (pmmtfo) lp1 aporu.ilue0nelps a4 3ewrtt e ,ipi hosRsoeyn np(p ?totru )?eSrl(cid:2) suawettg ni[hgo3tye.nCs nt(i ntos) ott.(cid:3)mhe e2 fTrue(tatu)s]ro(e1n. .s0 4t).
and 8.
A Practice Test is also included at the end of each chapter.
A Course Review follows the task at the end of Chapter 8. This comprehensive
selection of questions will help you to determine if you are ready for the
fi nal examination.
Preface • MHR vii
Assessment
✓17 A. OIcosntahefhnbt) e eaiel) eircW ttofa)dOn htev 2tfifhdae drseh ste0Snopaiayt aeae etitpem ven,nserehtynsetp t oi onh cad i dwrdnieoaasetsrt p ea o euh tc tftinbesvnstlihbethopomeeste )oeedeseetre ln karltpteeew a b x ru htswC tlaqe ottlerpshestpheeamnhuoh rsoiecre gtlootda taoefivea h eeidei entnn sleennrrhedt.to cxs, sursg ahhd e am.iWuktsp fialmontia o viybssv r rdaendtefsr .esbil aal gv ei detts ySetstsnyc iihvsseeoeooavduro i?iio eae osedulespaondvn vs fonerpntanfdtee e o sce o tds cu tprhe hfor vchhsyafmioex oerrinesei yoodrpiotd a c bsbvp i tpefirmxatcri h eieooase lereyd.ruae s f ss t.t p epS tits setttahwseW o oieiura 5f doenreid pstrph p 0tvangehtti no potleosiy r daeu dptst od inaatoshtotasmees he y) oaa dnfoeetp datsbhnvl vocpeo s tteeeeedehrl. sr e r s ta iy ett d . d) Iagfgal rrgylaageoppebuhbhr iraisncaoiagcilcla vlt lyerel,deyc ca,h thscnhoehoecne lkoeicn qkgygu yoy..a uoItfrui o yran ona usinnw ss woperlaev rruet dsu ci sni)it gn g STdawTCosehhhh mmyeeaas opoteCe u tny qheqrsoru auta urepReba stsheittetlieavirio otv iyynPeneow sr stlu oo .eap rba Ir artlerkoe pn cnmdvpeooeidl ndyswW.s,ie gil trseynhatdoasipgn uto-eek Ufd w a a paniabt sdsoho u c Auuamctcnnu,mh d raoiseaenp rvardspyett o mactprohntremeduon inbetmn nilCgteudy,mh n aotei oscacf aknwtthsdee.e l l
b 3whatisthe may be assigned as a project.
ba)) E RDxUoaesuteme ntrdpemc lyhienon eu2o ra l olalg nvyDsa wtleouet ergessr raotmopf hxtiw n yineo (cid:3) tVdh ecaeco liitumn xeta.eslr vpoalnal c [te0hs,. e2 πG] rsaucphh t hoaft yc o(cid:3)t x c (cid:3)ot 8 x. Technology
Solution The text shows examples of the use of the TI-83 Plus
a) t_Oann1 xa ginr aYp1h.ing calculator, enter the expression and TI-84 Plus graphing calculators, The Geometer’s
bx Tx)Ot UhU∈ hsr∈EneewseaD s eeen[ eno[i0p it n0pttgstYe,ohhphd ,eor2 imee le o2nioa8 πnrwtIhπiyf ]sntnp i]o tno tt oosorhoeh(cid:3) ecfifiYrecze tcn si cito u2(cid:2)nvtenigu nnrce.ttror1 setetrgaPsf a0rtrspa orisslai. cet hnpeaetl ascci a tensnluaettrp d iipreasatoop si xptYnnaenriirooctg .msoi tn xny,iutxa o i h atnmi(cid:3)xtnmoenht a i(cid:3)deZiad8ltn teei.y Ta en 1lttodryleht0yiuje rgeu.x mr x csvP i (cid:3)atniar(cid:3) nntetl eehs3 0 rse.v 2. f1a72l... STaalkrhgeeee tn bcTerhIawp- 8sa ay9dts ® Tttehi,mt eaa nng(Cidrua AmFdSae c)t 1 haa2olpc muplell aviDcteaoly,trn i doiasenm tusai.sic elF edSod trf aok ttreies ycctshioctnmrsoi™qpkuu eSetseos ra ft rthwea at re.
shown in worked examples.
264 MHR • Advanced Functions•Chat
Extension
These optional features extend the concepts of the preceding section using
technology or advanced mathematical techniques. They provide you with
interesting activities to challenge and engage you in new mathematical ideas.
Connections
This margin item includes
connections between topics in the course or to topics learned previously
interesting facts related to topics in the examples and exercises
suggestions for how to use the Internet to help you solve problems or to
research or collect information—direct links are provided on the Advanced
Functions 12 page on the McGraw-Hill Ryerson Web site.
Answers
Answers to the Prerequisite Skills, numbered sections, Chapter Review,
and Practice Test are provided on pages 524 to 585.
Responses for the Investigate, Communicate Your Understanding, and
Achievement Check questions and Chapter Problem Wrap-Up are provided
in the McGraw-Hill Ryerson Advanced Functions 12 Teacher’s Resource.
Full solutions to all questions, including proof questions, are on the
McGraw-Hill Ryerson Advanced Functions 12 Solutions CD-ROM.
viii MHR • Advanced Functions • Preface
1
Chapter
Polynomial Functions
Linear and quadratic functions are members of a larger
group of functions known as polynomial functions.
In business, the revenue, profi t, and demand can be
modelled by polynomial functions. An architect may
design bridges or other structures using polynomial
curves, while a demographer may predict population
trends using polynomial functions.
This chapter focuses on the properties and key
features of graphs of polynomial functions and their
transformations. You will also be introduced to the
concepts of average and instantaneous rate of change.
By the end of this chapter, you will
recognize a polynomial expression and the determine an equation of a polynomial function
equation of a polynomial function, and identify that satisfi es a given set of conditions (C1.7)
linear and quadratic functions as examples of investigate properties of even and odd polynomial
polynomial functions (C1.1) functions, and determine whether a given
compare, through investigation, the numeric, polynomial function is even, odd, or neither (C1.9)
graphical, and algebraic representations of investigate and recognize examples of a variety
polynomial functions (C1.2) of representations of average rate of change and
describe key features of the graphs of polynomial instantaneous rate of change (D1.1, D1.2, D1.3, D1.6)
functions (C1.3) calculate and interpret average rates of change of
distinguish polynomial functions from sinusoidal functions, given various representations of the
and exponential functions (C1.4) functions (D1.4)
investigate connections between a polynomial make connections between average rate of change
function given in factored form and the x-intercepts and the slope of a secant, and instantaneous rate
of its graph, and sketch the graph of a polynomial of change and the slope of a tangent (D1.7)
function given in factored form using its key recognize examples of instantaneous rates of
features (C1.5) change arising from real-world situations, and
investigate the roles of the parameters a, k, d, and c make connections between instantaneous rates
in functions of the form y (cid:2) af [k(x (cid:3) d)] (cid:4) c and of change and average rates of change (D1.5)
describe these roles in terms of transformations solve real-world problems involving average and
on the functions f(x) (cid:2) x 3 and f(x) (cid:2) x4 (C1.6) instantaneous rate of change (D1.9)
1
Prerequisite Skills
Function Notation b)
x y
1. Determine each value for the function (cid:3)1 (cid:3)8
f(x) (cid:2) (cid:3)4x (cid:4) 7. 0 (cid:3)2
a) f(0) b) f(3) c) f((cid:3)1) 1 (cid:3)1
d) f ( _1 ) e) f((cid:3)2x) f) f(3x) 2 5
2
3 7
2. Determine each value for the function
4 13
f(x) (cid:2) 2x2 (cid:3) 3x (cid:4) 1.
5 20
a) f(0) b) f(3) c) f((cid:3)1)
d) f ( _1 ) e) 3f(2x) f) f(3x) c) x y
2 (cid:3)4 (cid:3)12
Slope and y-intercept of a Line (cid:3)3 (cid:3)5
(cid:3)2 0
3. State the slope and the y-intercept of each line.
(cid:3)1 3
a) y(cid:2) 3x (cid:4) 2 b) 4y (cid:2) 6 (cid:3) 2x
0 4
c) 5x (cid:3) y (cid:4) 7 (cid:2) 0 d) y(cid:4) 6 (cid:2) (cid:3)5(x (cid:4) 1)
1 3
e) (cid:3)(x (cid:4) 4) (cid:2) 2(y (cid:3) 3)
2 0
Equation of a Line
Domain and Range
4. Determine an equation for the line that
satisfi es each set of conditions. 6. State the domain and range of each function.
a) The slope is 3 and the y-intercept is 5. Justify your answer.
b) The x-intercept is (cid:3)1 and the y-intercept is 4. a) y(cid:2) 2(x (cid:3) 3)2 (cid:4) 1
c) The slope is (cid:3)4 and the line passes through b) y(cid:2) _1_
x (cid:4) 5
the point (7, 3).
c) y(cid:2) √(cid:3)1 (cid:3)(cid:3) 2(cid:3)x
d) The line passes through the points (2, (cid:3)2)
and (1, 5).
Quadratic Functions
Finite Diff erences 7. Determine the equation of a quadratic function
that satisfi es each set of conditions.
5. Use fi nite differences to determine if each
a) x-intercepts 1 and (cid:3)1, y-intercept 3
function is linear, quadratic, or neither.
b) x-intercept 3, and passing through the
a)
x y
point (1, (cid:3)2)
(cid:3)2 (cid:3)7 c) x-intercepts (cid:3) _1 and 2, y-intercept (cid:3)4
(cid:3)1 (cid:3)5 2
0 (cid:3)3
1 (cid:3)1
2 1
3 3
4 5
2 MHR • Advanced Functions • Chapter 1