Table Of ContentCover Page: i
Half title Page: i
Title page Page: iii
Imprints page Page: iv
Dedication Page: v
Contents Page: vii
Contributors Page: xiv
Foreword Page: xvii
Acknowledgments Page: xix
Acronyms Page: xxii
1 Introduction Page: 1
1.1 Historical background Page: 1
1.1.1 Industrial and technological revolution: from steam engines to the Internet Page: 1
1.1.2 Mobile communications generations: from 1G to 4G Page: 2
1.1.3 From mobile broadband (MBB) to extreme MBB Page: 6
1.1.4 IoT: relation to 5G Page: 6
1.2 From ICT to the whole economy Page: 7
1.3 Rationale of 5G: high data volume, twenty-five billion connected devices and wide requirements Page: 9
1.3.1 Security Page: 11
1.4 Global initiatives Page: 12
1.4.1 METIS and the 5G-PPP Page: 12
1.4.2 China: 5G promotion group Page: 14
1.4.3 Korea: 5G Forum Page: 14
1.4.4 Japan: ARIB 2020 and Beyond Ad Hoc Page: 14
1.4.5 Other 5G initiatives Page: 14
1.4.6 IoT activities Page: 14
1.5 Standardization activities Page: 15
1.5.1 ITU-R Page: 15
1.5.2 3GPP Page: 15
1.5.3 IEEE Page: 16
1.6 Scope of the book Page: 16
References Page: 18
2 5G use cases and system concept Page: 21
2.1 Use cases and requirements Page: 21
2.1.1 Use cases Page: 21
2.1.1.1 Autonomous vehicle control Page: 23
2.1.1.2 Emergency communication Page: 24
2.1.1.3 Factory cell automation Page: 25
2.1.1.4 High-speed train Page: 25
2.1.1.5 Large outdoor event Page: 25
2.1.1.6 Massive amount of geographically spread devices Page: 26
2.1.1.7 Media on demand Page: 26
2.1.1.8 Remote surgery and examination Page: 26
2.1.1.9 Shopping mall Page: 27
2.1.1.10 Smart city Page: 27
2.1.1.11 Stadium Page: 28
2.1.1.12 Teleprotection in smart grid network Page: 28
2.1.1.13 Traffic jam Page: 28
2.1.1.14 Virtual and augmented reality Page: 29
2.1.1.15 Other use cases: two examples Page: 29
2.1.2 Requirements and key performance indicators Page: 30
2.2 5G system concept Page: 31
2.2.1 Concept overview Page: 32
2.2.2 Extreme mobile broadband Page: 34
2.2.2.1 Access to new spectrum and new types of spectrum access Page: 35
2.2.2.2 New radio interface for dense deployments Page: 35
2.2.2.3 Spectral efficiency and advanced antenna systems Page: 35
2.2.2.4 Number of users Page: 36
2.2.2.5 User mobility Page: 36
2.2.2.6 Links to the main enablers Page: 36
2.2.3 Massive machine-type communication Page: 36
2.2.3.1 Links to the main enablers Page: 37
2.2.4 Ultra-reliable machine-type communication Page: 38
2.2.4.1 Links to the main enablers Page: 39
2.2.5 Dynamic radio access network Page: 39
2.2.5.1 Ultra-dense networks Page: 40
2.2.5.2 Moving Networks Page: 41
2.2.5.3 Antenna beams Page: 41
2.2.5.4 Wireless devices as temporary network nodes Page: 41
2.2.5.5 Device-to-device communication Page: 42
2.2.5.6 Activation and deactivation of nodes Page: 42
2.2.5.7 Interference identification and mitigation Page: 42
2.2.5.8 Mobility management Page: 42
2.2.5.9 Wireless backhaul Page: 42
2.2.6 Lean system control plane Page: 43
2.2.6.1 Common system access Page: 43
2.2.6.2 Service-specific signaling Page: 43
2.2.6.3 Control and user plane separation Page: 44
2.2.6.4 Support of different frequency ranges Page: 44
2.2.6.5 Energy performance Page: 44
2.2.7 Localized contents and traffic flows Page: 45
2.2.7.1 Anti-tromboning Page: 45
2.2.7.2 Device-to-device offloading Page: 45
2.2.7.3 Servers and contents close to the radio edge Page: 46
2.2.8 Spectrum toolbox Page: 46
2.2.8.1 Spectrum needs for xMBB Page: 47
2.2.8.2 Spectrum needs for mMTC Page: 47
2.2.8.3 Spectrum needs for uMTC Page: 47
2.2.8.4 Properties of the spectrum toolbox Page: 47
2.3 Conclusions Page: 48
References Page: 48
3 The 5G architecture Page: 50
3.1 Introduction Page: 50
3.1.1 NFV and SDN Page: 50
3.1.2 Basics about RAN architecture Page: 53
3.2 High-level requirements for the 5G architecture Page: 56
3.3 Functional architecture and 5G flexibility Page: 57
3.3.1 Functional split criteria Page: 58
3.3.2 Functional split alternatives Page: 59
3.3.3 Functional optimization for specific applications Page: 61
3.3.4 Integration of LTE and new air interface to fulfill 5G requirements Page: 63
Inter-connected core networks or a common core network Page: 63
Common physical layer (PHY) Page: 64
Common medium access control (MAC) Page: 65
Common RLC Page: 65
Common PDCP/radio resource control (RRC) Page: 65
3.3.5 Enhanced Multi-RAT coordination features Page: 66
Control plane diversity Page: 66
Fast control plane switching Page: 66
User plane aggregation Page: 67
Fast user plane switching Page: 67
Lean by help of LTE Page: 67
3.4 Physical architecture and 5G deployment Page: 67
3.4.1 Deployment enablers Page: 67
3.4.2 Flexible function placement in 5G deployments Page: 70
3.4.2.1 Wide-area coverage with optical fiber deployment Page: 73
3.4.2.2 Wide-area coverage with heterogeneous backhaul Page: 73
3.4.2.3 Local-area stadium Page: 74
3.5 Conclusions Page: 74
References Page: 75
4 Machine-type communications Page: 77
4.1 Introduction Page: 77
4.1.1 Use cases and categorization of MTC Page: 77
4.1.1.1 The general use case of low-rate MTC Page: 77
4.1.1.2 Use case: the connected car Page: 78
4.1.1.3 Use case: the smart grid Page: 79
4.1.1.4 Use case: factory cell automation Page: 79
4.1.1.5 Categorization of MTC Page: 80
4.1.2 MTC requirements Page: 80
4.1.2.1 Massive MTC Page: 80
4.1.2.2 Ultra-reliable MTC Page: 81
4.2 Fundamental techniques for MTC Page: 82
4.2.1 Data and control for short packets Page: 83
4.2.2 Non-orthogonal access protocols Page: 85
4.3 Massive MTC Page: 86
4.3.1 Design principles Page: 86
4.3.2 Technology components Page: 86
4.3.2.1 Features for low device complexity Page: 86
4.3.2.2 Features for service flexibility Page: 87
4.3.2.3 Features for coverage extension Page: 88
4.3.2.4 Features for long battery lifetime Page: 89
4.3.2.5 Features for scalability and capacity Page: 91
4.3.3 Summary of mMTC features Page: 94
4.4 Ultra-reliable low-latency MTC Page: 94
4.4.1 Design principles Page: 94
4.4.2 Technology components Page: 96
4.4.2.1 Features for reliable low latency Page: 96
4.4.2.2 Feature for reliability: availability indication Page: 98
4.4.2.3 Features enabled by D2D communications Page: 99
4.4.3 Summary of uMTC features Page: 101
4.5 Conclusions Page: 101
References Page: 103
5 Device-to-device (D2D) communications Page: 107
5.1 D2D: from 4G to 5G Page: 107
5.1.1 D2D standardization: 4G LTE D2D Page: 109
5.1.1.1 D2D synchronization Page: 109
5.1.1.2 D2D communication Page: 110
5.1.1.3 D2D discovery Page: 111
5.1.2 D2D in 5G: research challenges Page: 112
5.2 Radio resource management for mobile broadband D2D Page: 113
5.2.1 RRM techniques for mobile broadband D2D Page: 113
5.2.2 RRM and system design for D2D Page: 114
5.2.3 5G D2D RRM concept: an example Page: 115
5.2.3.1 Flexible uplink and downlink TDD concept for D2D Page: 116
5.2.3.2 Decentralized and centralized schedulers Page: 117
5.2.3.3 Mode selection Page: 117
5.2.3.4 Performance analysis Page: 118
5.3 Multi-hop D2D communications for proximity and emergency services Page: 119
5.3.1 National security and public safety requirements in 3GPP and METIS Page: 120
5.3.2 Device discovery without and with network assistance Page: 122
5.3.3 Network-assisted multi-hop D2D communications Page: 122
5.3.4 Radio resource management for multi-hop D2D Page: 123
5.3.4.1 Mode selection for proximity communications Page: 124
5.3.4.2 Mode selection for range extension Page: 124
5.3.5 Performance of D2D communications in the proximity communications scenario Page: 125
5.4 Multi-operator D2D communication Page: 127
5.4.1 Multi-operator D2D discovery Page: 127
5.4.2 Mode selection for multi-operator D2D Page: 128
5.4.2.1 Mode selection algorithm Page: 129
5.4.3 Spectrum allocation for multi-operator D2D Page: 129
5.4.3.1 Spectrum allocation algorithm Page: 130
5.4.3.2 Numerical example Page: 131
5.5 Conclusions Page: 133
References Page: 134
6 Millimeter wave communications Page: 137
6.1 Spectrum and regulations Page: 137
6.2 Channel propagation Page: 138
6.3 Hardware technologies for mmW systems Page: 139
6.3.1 Device technology Page: 139
6.3.2 Antennas Page: 142
6.3.3 Beamforming architecture Page: 143
6.4 Deployment scenarios Page: 144
6.5 Architecture and mobility Page: 146
6.5.1 Dual connectivity Page: 147
6.5.2 Mobility Page: 147
6.5.2.1 Phantom cell Page: 147
6.5.2.2 Terminal-specific serving cluster Page: 147
6.6 Beamforming Page: 149
6.6.1 Beamforming techniques Page: 149
6.6.2 Beam finding Page: 150
6.6.2.1 Linear beam scan Page: 150
6.6.2.2 Tree scan Page: 151
6.6.2.3 Random excitation Page: 151
6.7 Physical layer techniques Page: 152
6.7.1 Duplex scheme Page: 152
6.7.2 Transmission schemes Page: 152
6.8 Conclusions Page: 155
References Page: 155
7 The 5G radio-access technologies Page: 158
7.1 Access design principles for multi-user communications Page: 159
7.1.1 Orthogonal multiple-access systems Page: 160
7.1.1.1 Frequency division multiple-access systems Page: 160
7.1.1.2 Time division multiple-access systems Page: 161
7.1.1.3 Orthogonal frequency division multiple-access systems Page: 162
7.1.2 Spread spectrum multiple-access systems Page: 164
7.1.2.1 Frequency hop-code division multiple-access systems Page: 164
7.1.2.2 Direct sequence-code division multiple-access systems Page: 164
7.1.3 Capacity limits of multiple-access methods Page: 164
7.1.3.1 The multiple-access channel (uplink) Page: 165
7.1.3.2 The broadcast channel (downlink) Page: 167
7.2 Multi-carrier with filtering: a new waveform Page: 169
7.2.1 Filter-bank based multi-carrier Page: 169
7.2.1.1 FBMC: An enabler for a flexible air interface design Page: 172
7.2.1.2 Solutions for practical challenges Page: 174
7.2.2 Universal filtered OFDM Page: 175
7.3 Non-orthogonal schemes for efficient multiple access Page: 178
7.3.1 Non-orthogonal multiple access (NOMA) Page: 179
7.3.2 Sparse code multiple access (SCMA) Page: 181
7.3.3 Interleave division multiple access (IDMA) Page: 182
7.4 Radio access for dense deployments Page: 184
7.4.1 OFDM numerology for small-cell deployments Page: 186
7.4.1.1 Harmonized OFDM and scalable numerology Page: 186
7.4.1.2 OFDM time numerology Page: 186
7.4.1.3 OFDM frequency numerology Page: 187
7.4.2 Small-cell sub-frame structure Page: 187
7.4.2.1 Main design principles for small-cell optimized sub-frame structure Page: 188
7.4.2.2 Control part design principles Page: 189
7.4.2.3 Sub-frame structure properties and achieved gains Page: 189
7.4.2.4 Self-backhauling and multi-antenna aspects Page: 191
7.5 Radio access for V2X communication Page: 192
7.5.1 Medium access control for nodes on the move Page: 192
7.6 Radio access for massive machine-type communication Page: 194
7.6.1 The massive access problem Page: 195
7.6.1.1 LTE / LTE-A RACH limitations Page: 195
7.6.1.2 Signaling/control overhead for mMTC Page: 196
7.6.1.3 KPIs and methodology for 5G performance Page: 197
7.6.2 Extending access reservation Page: 198
7.6.3 Direct random access Page: 199
7.7 Conclusions Page: 201
References Page: 202
8 Massive multiple-input multiple-output (MIMO) systems Page: 208
8.1 Introduction Page: 208
8.1.1 MIMO in LTE Page: 210
8.2 Theoretical background Page: 211
8.2.1 Single user MIMO Page: 212
8.2.2 Multi-user MIMO Page: 215
8.2.2.1 Uplink channel Page: 215
8.2.2.2 Downlink channel Page: 216
8.2.3 Capacity of massive MIMO: a summary Page: 217
8.3 Pilot design for massive MIMO Page: 217
8.3.1 The pilot-data trade-off and impact of CSI Page: 218
8.1.1.1 Impact of channel state information errors on the throughput of massive MIMO systems Page: 219
8.3.2 Techniques to mitigate pilot contamination Page: 220
8.3.2.1 Pilot power control based on open loop path loss compensation Page: 220
8.3.2.2 Coded random access in massive MIMO systems Page: 221
Uplink Page: 223
Downlink Page: 224
8.4 Resource allocation and transceiver algorithms for massive MIMO Page: 225
8.4.1 Decentralized coordinated transceiver design for massive MIMO Page: 225
8.4.1.1 System model Page: 226
8.4.1.2 Performance results Page: 227
8.4.2 Interference clustering and user grouping Page: 228
8.4.2.1 Performance results Page: 231
8.5 Fundamentals of baseband and RF implementations in massive MIMO Page: 233
8.5.1 Basic forms of massive MIMO implementation Page: 233
8.5.2 Hybrid fixed BF with CSI-based precoding (FBCP) Page: 235
8.5.2.1 Performance of FBCP Page: 235
8.5.3 Hybrid beamforming for interference clustering and user grouping Page: 238
8.5.3.1 Performance of hybrid BF for interference mitigation Page: 239
8.6 Channel models Page: 241
8.7 Conclusions Page: 242
References Page: 242
9 Coordinated multi-point transmission in 5G Page: 248
9.1 Introduction Page: 248
9.2 JT CoMP enablers Page: 250
9.2.1 Channel prediction Page: 252
9.2.2 Clustering and interference floor shaping Page: 253
9.2.3 User scheduling and precoding Page: 257
9.2.4 Interference mitigation framework Page: 257
9.2.5 JT CoMP in 5G Page: 258
9.3 JT CoMP in conjunction with ultra-dense networks Page: 259
9.4 Distributed cooperative transmission Page: 260
9.4.1 Decentralized precoding/filtering design with local CSI Page: 261
9.4.1.1 Performance Page: 263
9.4.2 Interference alignment Page: 265
9.4.2.1 Multi-user inter-cell interference alignment Page: 265
9.4.2.2 Performance Page: 267
9.5 JT CoMP with advanced receivers Page: 267
9.5.1 Dynamic clustering for JT CoMP with multiple antenna UEs Page: 268
9.5.1.1 Performance of dynamic clustering Page: 269
9.5.2 Network-assisted interference cancellation Page: 271
9.6 Conclusions Page: 272
References Page: 273
10 Relaying and wireless network coding Page: 277
10.1 The role of relaying and network coding in 5G wireless networks Page: 277
10.1.1 The revival of relaying Page: 278
10.1.2 From 4G to 5G Page: 279
10.1.3 New relaying techniques for 5G Page: 279
10.1.4 Key applications in 5G Page: 281
10.2 Multi-flow wireless backhauling Page: 283
10.2.1 Coordinated direct and relay (CDR) transmission Page: 285
10.2.2 Four-way relaying (FWR) Page: 287
10.2.3 Wireless-emulated wire (WEW) for backhaul Page: 288
10.3 Highly flexible multi-flow relaying Page: 290
10.3.1 Basic idea of multi-flow relaying Page: 290
10.3.2 Achieving high throughput for 5G Page: 293
10.3.3 Performance evaluation Page: 294
10.4 Buffer-aided relaying Page: 295
10.4.1 Why buffers? Page: 295
10.4.2 Relay selection Page: 296
10.4.3 Handling inter-relay interference Page: 299
10.4.4 Extensions Page: 299
10.5 Conclusions Page: 299
References Page: 300
11 Interference management, mobility management, and dynamic reconfiguration Page: 303
11.1 Network deployment types Page: 304
11.1.1 Ultra-dense network or densification Page: 304
11.1.2 Moving networks Page: 305
11.1.3 Heterogeneous networks Page: 306
11.2 Interference management in 5G Page: 306
11.2.1 Interference management in UDNs Page: 307
11.2.1.1 Performance of UDNs using dynamic TDD Page: 308
11.2.2 Interference management for moving relay nodes Page: 310
11.2.2.1 Performance of moving relay nodes Page: 311
11.2.3 Interference cancelation Page: 313
11.3 Mobility management in 5G Page: 314
11.3.1 User equipment-controlled versus network-controlled handover Page: 315
11.3.2 Mobility management in heterogeneous 5G networks Page: 317
11.3.2.1 Fingerprints coverage for multi-RAT and multi-layer environments Page: 318
11.3.2.2 D2D-aware handover Page: 318
11.3.2.3 Handover for moving relay nodes Page: 319
11.3.3 Context awareness for mobility management Page: 320
11.3.3.1 Exploitation of location information for mobility management Page: 320
11.4 Dynamic network reconfiguration in 5G Page: 323
11.4.1 Energy savings through control/user plane decoupling Page: 323
11.4.2 Flexible network deployment based on moving networks Page: 326
11.5 Conclusions Page: 330
References Page: 331
12 Spectrum Page: 336
12.1 Introduction Page: 336
12.1.1 Spectrum for 4G Page: 337
12.1.2 Spectrum challenges in 5G Page: 339
12.2 5G spectrum landscape and requirements Page: 341
12.2.1 Bandwidth requirements Page: 343
12.3 Spectrum access modes and sharing scenarios Page: 345
12.4 5G spectrum technologies Page: 346
12.4.1 Spectrum toolbox Page: 346
12.4.2 Main technology components Page: 347
12.5 Value of spectrum for 5G: a techno-economic perspective Page: 349
12.6 Conclusions Page: 352
Spectrum requirements Page: 352
Types of spectrum Page: 352
Licensing Page: 353
References Page: 353
13 The 5G wireless propagation channel models Page: 357
13.1 Introduction Page: 357
13.2 Modeling requirements and scenarios Page: 358
13.2.1 Channel model requirements Page: 358
13.2.1.1 Spectrum Page: 359
13.2.1.2 Antenna Page: 359
13.2.1.3 System Page: 360
13.2.1.4 Additional requirements Page: 361
13.2.1.5 Summary of channel model requirements Page: 361
13.2.2 Propagation scenarios Page: 361
13.3 The METIS channel models Page: 362
13.3.1 Map-based model Page: 363
13.3.1.1 General description Page: 363
13.3.1.2 Creation of the environment Page: 364
13.3.1.3 Determination of propagation pathways Page: 365
13.3.1.4 Determination of propagation channel matrices Page: 365
Diffracted pathways by Berg recursive model Page: 366
Scattering and blocking objects Page: 367
13.3.1.5 Composing radio channel transfer function Page: 370
13.3.2 Stochastic model Page: 371
13.3.2.1 Path loss Page: 371
13.3.2.2 Large-scale parameters based on sum-of-sinusoids Page: 373
13.3.2.3 mm-Wave parameterization Page: 374
13.3.2.4 Direct sampling of Laplacian shape Page: 376
13.3.2.5 Dynamic modeling and spherical waves Page: 377
13.4 Conclusions Page: 378
References Page: 379
14 Simulation methodology Page: 381
14.1 Evaluation methodology Page: 381
14.1.1 Performance indicators Page: 381
14.1.1.1 User throughput Page: 381
14.1.1.2 Application data rate Page: 382
14.1.1.3 Cell throughput Page: 382
14.1.1.4 Spectral efficiency Page: 382
14.1.1.5 Traffic volume Page: 382
14.1.1.6 Error rate Page: 382
14.1.1.7 Delay Page: 383
14.1.1.8 Network energy performance Page: 383
14.1.1.9 Cost Page: 383
14.1.2 Channel simplifications Page: 383
14.1.2.1 Small-scale modeling Page: 383
14.1.2.2 Large-scale modeling when base station is on the rooftop level Page: 384
14.1.2.3 Large-scale modeling when base station is much below the mean building height Page: 386
14.2 Calibration Page: 387
14.2.1 Link-level calibration Page: 387
14.2.1.1 Calibration step 1 – OFDM modulation Page: 388
14.2.1.2 Calibration step 2 – channel coding Page: 388
14.2.1.3 Calibration step 3 – SIMO configuration Page: 388
14.2.1.4 Calibration step 4 – MIMO configuration for transmit diversity Page: 390
14.2.1.5 Calibration step 5 – MIMO configuration for spatial multiplexing Page: 390
14.2.1.6 Calibration step 6 – uplink Page: 390
14.2.1.7 Calibration step 7 – 3GPP minimum requirements Page: 390
14.2.1.8 Calibration step 8 – multi-link-level calibration Page: 391
14.2.2 System-level calibration Page: 391
14.2.2.1 Calibration phase 1 – LTE technology Page: 391
14.2.2.2 Calibration phase 2 – LTE-Advanced with basic deployment Page: 392
14.3 New challenges in the 5G modeling Page: 392
14.3.1 Real scenarios Page: 392
14.3.2 New waveforms Page: 394
14.3.3 Massive MIMO Page: 395
14.3.4 Higher frequency bands Page: 395
14.3.5 Device-to-device link Page: 396
14.3.6 Moving networks Page: 397
14.4 Conclusions Page: 397
References Page: 398
Index Page: 401
Description:Written by leading experts in 5G research, this book is a comprehensive overview of the current state of 5G. Covering everything from the most likely use cases, spectrum aspects, and a wide range of technology options to potential 5G system architectures, it is an indispensable reference for academics and professionals involved in wireless and mobile communications. Global research efforts are summarised, and key component technologies including D2D, mm-wave communications, massive MIMO, coordinated multi-point, wireless network coding, interference management and spectrum issues are described and explained. The significance of 5G for the automotive, building, energy, and manufacturing economic sectors is addressed, as is the relationship between IoT, machine type communications, and cyber-physical systems. This essential resource equips you with a solid insight into the nature, impact and opportunities of 5G.