Table Of Content5566GGss//ss AADDCC
EEnnaabblliinngg 110000GGbbEE
Ian Dedic, Chief Engineer, Fujitsu Microelectronics Europe
OFC2010 Invited Paper, Digital Transmission Systems
Copyright 2009 FUJITSU MICROELECTRONICS EUROPE GmbH
5566GGss//ss AADDCC :: nnoott jjuusstt aann AADDCC ddeessiiggnn pprroobblleemm
(cid:1)
100G coherent receiver
(cid:1)
Why single-chip CMOS?
(cid:1)
So what is so difficult?
(cid:1)
CHAIS ADC
(cid:1)
DSP and integration
(cid:1)
Package and PCB
(cid:1)
Testing
(cid:1)
Examples
(cid:1)
Future challenges
OFC2010/OThT6 -- 56 GS/s ADC: Enabling 100GbE 1 Fujitsu Microelectronics Europe -http://www.chais.info
110000GG CCoohheerreenntt OOppttiiccaall TTrraannssppoonnddeerr
100G MUX
S E
F le
I- c
S t
10 r
/ S S ic
M F F to a
LD I-S I-S Precoding 4 l ->
O
/ MUX
X p
F ti
c
I
s a
p l
b s
To system G p To network
OTU-4 b
1 G
(Router) Framer / FEC 11. 8
2
* * OTU-4
0
S 1 ADC 4 O 112 Gbps
100G client module for F p
* 100G Ethernet or I- ti
S c
* OTU-4 / M SF SF ADC al -
I I DSP >
LD -S -S E
ADC le
/
c
X
t
F ri
I c
ADC a
l
100G Coherent Receiver ADC+DSP
Optical Module
OFC2010/OThT6 -- 56 GS/s ADC: Enabling 100GbE 2 Fujitsu Microelectronics Europe -http://www.chais.info
110000GG ccoohheerreenntt rreecceeiivveerr rreeqquuiirreemmeennttss
(cid:1)
4-channel 56Gs/s ADC, minimum 6b resolution
(cid:1) DP-QPSK receiver with H/V channels, I/Q conversion (OIF standard)
(cid:1) 2x oversampling minimizes impact on performance
• 56Gs/s needed, >60Gs/s with soft FEC
(cid:1) In early 2009, predicted availability for such an ADC was in 2013
• Major obstacle to target rollout date for 100G networks
(cid:1)
DSP to remove transmission channel imperfections and recover data
(cid:1) Dispersion, cross-polarization, time-varying channel, clock recovery
(cid:1) ~12 TeraOperations/sec (TOPS) for 40Gb/s (cid:2) ~30 TOPS for 100Gb/s ?
(cid:1)
Power consumption and thermal constraints
(cid:1) OIF target for complete coherent transponder ~70W
(cid:1) Severe challenge for both ADC and DSP design
• Total power for ADC+DSP needs to be < 50W
(cid:1) Environmental restrictions make problem even more difficult than it first appears
OFC2010/OThT6 -- 56 GS/s ADC: Enabling 100GbE 3 Fujitsu Microelectronics Europe -http://www.chais.info
WWhhyy ssiinnggllee--cchhiipp CCMMOOSS ffoorr 110000GG??
(cid:1)
Massive data bandwidth between ADC and DSP
(cid:1) 4-channel 6-8b 56Gs/s ADC means 1.3-1.8Tb/s of data at interface
(cid:1) Getting this from one chip to another costs power and chip area
(cid:2)
• 10G SERDES link ~100mW/channel 3-4W per ADC
(cid:1)
Critical performance factor is power efficiency, not just speed
(cid:1) Discrete ADC dissipating >10W each are difficult to use
• Total power dissipation is too high (>100W)
• Skew management/calibration nightmare (especially over temperature/lifetime)
• Higher intrinsic manufacturing cost and lower yield for a hybrid
(cid:1)
Single-chip CMOS solution is the “Holy Grail”
(cid:1) Integrate on ASIC with >50M gates (limited by power dissipation)
(cid:1) Leverage CMOS technology advances to drive down power and cost
• Single-chip allows integration of calibration and channel deskew/matching
(cid:1) ADC and DAC get faster and lower power at the same rate as digital – ideally ☺
OFC2010/OThT6 -- 56 GS/s ADC: Enabling 100GbE 4 Fujitsu Microelectronics Europe -http://www.chais.info
AADDCC++DDSSPP ---- ssoo wwhhaatt iiss ssoo ddiiffffiiccuulltt ??
(cid:1)
ADC is the biggest circuit design problem
(cid:1) Ultra-high speed, low noise and jitter, low power consumption – all same time
(cid:1) Conventional techniques cannot easily deliver required performance
(cid:1)
Digital-analogue noise coupling
(cid:1) Sampler/clock jitter <100fs on same chip as DSP with >100A current spikes
(cid:1)
Wide bandwidth (>15GHz), good S11 (up to >30GHz), low theta-jc
(cid:1) Sampler, package, PCB design all very challenging
(cid:1)
DSP design is out-of-the-ordinary (tens of TeraOPS)
(cid:1) Extremely power-efficient (cid:2) use massive parallelism, not GHz clocks
(cid:1)
Test
(cid:1) Performance verification challenges limits of test equipment
(cid:1) Need at-speed performance verification in production, not just functional testing
OFC2010/OThT6 -- 56 GS/s ADC: Enabling 100GbE 5 Fujitsu Microelectronics Europe -http://www.chais.info
TThhee AADDCC pprroobblleemm
(cid:1)
Wideband low-noise sampler + demultiplexer + interleaved ADC array
(cid:1) Smaller CMOS geometries (cid:2) higher speed (cid:2) worse mismatch and noise
(cid:1)
Single 56Gs/s track/hold very difficult due to extreme speed
(cid:1) <9ps to acquire, <9ps to transfer to following interleaved T/H stages
(cid:1)
Interleaved track/hold (e.g. 4-channel 14Gs/s) also very difficult
(cid:1) Signal/clock delays must match to <<1ps – how do you measure this?
(cid:1)
Noise, mismatch and power of cascaded circuits all adds up
(cid:1) Multiple sampling capacitors, buffers, switches, demultiplexers…
(cid:1)
Interleaved ADC back-end is not so difficult (but only in comparison!)
(cid:1) Design for best power and area efficiency rather than highest speed
(cid:1) Interleave as many as necessary to achieve required sampling rate
(cid:1) 8 x 175Ms/s 8b SAR ADCs fit underneath 1 solder bump (cid:2) 45Gs/s per sq mm ☺
OFC2010/OThT6 -- 56 GS/s ADC: Enabling 100GbE 6 Fujitsu Microelectronics Europe -http://www.chais.info
AA 5566GGss//ss CCMMOOSS AADDCC ssoolluuttiioonn
CHArge-mode Interleaved Sampler (CHAIS)
DEMUX
14GHz VCO
80 x ADC Inputs 80 x 8b ADC Outputs
(1 per ADC pair)
Clocks
D 80 80
E
M ADCBANK
U A
X
A
D 80 80
E
ADCBANK
M
B
U
X
Input B
4 Phase Sampler
D 80 80
EM ADCBANK D Output
U C ig
X i 1024b
C t
a
437.5MHz
l
80 80
D
E
M ADCBANK
U D
X
D
Trim Voltages
Calibration
OFC2010/OThT6 -- 56 GS/s ADC: Enabling 100GbE 7 Fujitsu Microelectronics Europe -http://www.chais.info
CCHHAAIISS cciirrccuuiitt ooppeerraattiioonn
[ this page intentionally left blank ]
OFC2010/OThT6 -- 56 GS/s ADC: Enabling 100GbE 8 Fujitsu Microelectronics Europe -http://www.chais.info
AADDCC ppeerrffoorrmmaannccee
(cid:1)
56Gs/s with 8 bit resolution
(cid:1) Extra resolution allows some digital AGC after ADC instead of in OFE
• Non-ideal INL/DNL has negligible impact on performance
(cid:1) 63Gs/s for 40nm ADC to allow for higher overhead soft decision FEC
• Higher clock rate plus soft FEC needs 40nm to meet same power budget
(cid:1)
16GHz bandwidth
(cid:1) Closely controlled, can be extended using digital equalization if required
(cid:1)
ENOB>5.7 for -6dBFS sinewave input
(cid:1) Similar power to 100G OFE output signal peaking at full-scale (PAR=9dB)
(cid:1)
ENOB almost constant with input frequency
(cid:1) On-chip PLL jitter is 30fs rms, THD < -40dBc at 15GHz
(cid:1) <0.2ENOB variation from 1GHz to 15GHz
(cid:1)
Power consumption 2W per ADC in 65nm, 9W for complete 4-channel RX
(cid:1) 5W for 63Gs/s 40nm 4-channel RX – power scales better than digital !
OFC2010/OThT6 -- 56 GS/s ADC: Enabling 100GbE 9 Fujitsu Microelectronics Europe -http://www.chais.info
Description:56Gs/s ADC : not just an ADC design problem. ▫ 100G coherent .. CPU, GPU, FPGA, standard ASIC don't have this problem (lower activity levels) . Increased confidence that chip actually meets design specifications. ▫ Make chip self-testing as far as possible and do at-speed performance tests.