Table Of ContentVirusResearch208(2015)136–145
ContentslistsavailableatScienceDirect
Virus Research
journal homepage: www.elsevier.com/locate/virusres
Functional characterization and proteomic analysis of the
nucleocapsid protein of porcine deltacoronavirus
SunheeLee,ChangheeLee∗
AnimalVirologyLaboratory,SchoolofLifeSciences,BK21plusKNUCreativeBioResearchGroup,KyungpookNationalUniversity,Daegu702-701,
SouthKorea
a r t i c l e i n f o a b s t r a c t
Articlehistory: Porcine deltacoronavirus (PDCoV) is a newly discovered enterotropic swine coronavirus that causes
Receiv ed1May2015 enteritis anddiarrheain piglets.L ike o therco ronaviruses ,PDCoVcom monly contains4m ajor struc-
AReccceepivteedd i1n 5 rJeuvni see2d0 f1o5rm 11 June 2015 tural pro teins : spike (S ), e nvelope (E), m embr ane (M), and nu cleocap sid (N) prot eins. Amo n g these , the N
proteinisknowntobethemostabundantandmultifunctionalviralcomponent.Therefore,asthefirststep
Availableonline20June2015
towardunderstandingthebiologyofPDCoV,thepresentstudyinvestigatedfunctionalcharacteristicsand
expressiondynamicsofhostproteinsinastableporcinecelllineconstitutivelyexpressingthePDCoVN
Keywords:
protein.SimilartoNproteinsofothercoronaviruses,thePDCoVNproteinwasfoundtointeractwithitself
PDCoV
toformnon-covalentlylinkedoligomersandwasmainlylocalizedtothenucleolus.Wethenassessed
Nucleocapsid
Oligomerization alterations in production levels of proteins in the N-expressing PK (PK-PDCoV-N) cells at different time
Nucleolarlocalization pointsbymeansofproteomicanalysis.Accordingtotheresultsofhigh-resolutiontwo-dimensionalgel
Proteomic s electro ph oresis, at otalof43 proteins potswere in itial lyfoun d tobedifferentia llyexpressedin PK-
Cellularproteinregulation PDCoV-NcellsincomparisonwithcontrolPKcells.Ofthesespots,10proteinspotsshowedastatistically
significantalteration,including8up-regulatedand2down-regulatedproteinspotsandwerepickedfor
subsequentproteinidentificationbypeptidemassfingerprintingfollowingmatrix-assistedlaserdes-
orption/ionizationtime-of-flightmassspectrometry.Theaffectedcellularproteinsthatweidentifiedin
thisstudywereclassifiedintothefunctionalgroupsinvolvedinvariouscellularprocessessuchascell
division,metabolism,thestressresponse,proteinbiosynthesisandtransport,cytoskeletonnetworks
andcellcommunication.Notably,twomembersoftheheatshockprotein70familywerefoundtobe
up-regulatedinPK-PDCoV-Ncells.Theseproteomicdatawillprovideinsightsintothespecificcellular
responsetotheNproteinduringPDCoVinfection.
©2015ElsevierB.V.Allrightsreserved.
1. Introduction 2014a,b;Wangetal.,2014).Furthermore,recentindependentstud-
iesdemonstratedthatPDCoVcancausesevereentericlesionsand
Porcinedeltacoronavirus(PDCoV)isanemergingviralpathogen clinicaldiarrheaintheabsenceofotherpathogensinneonataland
that was first reported in 2012 in Hong Kong, China (Woo gnotobioticpigs(Jungetal.,2015).Shortlythereafter,PDCoVwas
et al., 2012). In February 2014, the detection of PDCoV was first identifiedinKoreain2fecalsamplesindependentlycollectedin
announcedinOhio,UnitedStates,inconjunctionwithoutbreaksof AprilandJune2014,andeachofwhichwerepositiveforarotavirus
diarrheawithoutotheretiologicagents.Sinceitsemergence,this andnegativeforotherentericviruses(LeeandLee,2014).Genetic
novelcoronavirushasbeendetectedin17USstates,andalmost and phylogenetic analyses showed that these Korean strains are
80%ofthetestedsamplescorrespondedtocasesofcoinfectionof morecloselyrelatedtotheUSstrainsthantotheHongKongHKU15
PDCoV with other enteric viral pathogens such as a rotavirus or strains(LeeandLee,2014).
porcine epidemic diarrhea virus (Li et al., 2014; Marthaler et al., PDCoVisalarge,envelopedviruspossessingasingle-stranded,
positive-se n se RNAg enomeofa ppro ximately25 .4 kbwitha5(cid:3)cap
and a 3(cid:3) polya deny lated tai l, b elonging to th e ge nus Delt ac oron-
aviruswithinthefamilyCoronaviridaeoftheorderNidovirales(de
∗ Corresponding author at: School of Life Sciences, College of Natu- Groot et al., 201 1; Woo et al., 2012) . T he PDCoV genome c on-
ral Sciences, Kyungpook National University, Daegu 702-701, South Korea.
tains six common coronaviral genes in the following conserved
Tel.:E +-8m2a 5il3a d9d5r0e s7s3:6c5h;a fnagxh: e+e8@2k 5n3u 9.a5c5.k 5r5(C2.2L.ee). order : 5 (cid:3) untransl ated region (UTR) -O RF1a -ORF-1b-S -E-M-N-3(cid:3)
http://dx.doi.org/10.1016/j.virusres.2015.06.013
0168-1702/©2015ElsevierB.V.Allrightsreserved.
S.Lee,C.Lee/VirusResearch208(2015)136–145 137
UTR. ORF1a/b encompasses two-thirds of the genome encoding 70-kDa protein (HSC70), (cid:3)-actin, (cid:4)-tubulin, and Sp1 were pur-
2 overlapping viral replicase polyproteins, 1a and 1ab, which chasedfromSantaCruzBiotechnology(SantaCruz,CA).
arethenproteolyticallyprocessedintomaturenonstructuralpro-
teins.Asinothercoronaviruses,productionofpolyproteins1aand 2.2. ConstructionofthePDCoVNplasmid
1abre qu ire sa− 1ribosomalfra meshiftdu rin gtranslation of the
genomicRNA.Thelastthirdofthegenomeencodesthe4structural DNA manipulation and cloning were performed according
proteins,spike(S),envelope(E),membrane(M),andnucleocapsid to standard procedures (Sambrook and Russell, 2001). The
(N),aswe llast woa ccessory gen es,nonstruc tura lgen e6(NS6)and Es cherichia c oli strain D H5(cid:4) (RBC Bios cience, T aiwan) was
NS7gene,betweenMandN,andwithinN,respectively(Laietal., used as the host for general cloning. The full-length N gene
2007; Lee and Lee, 2014; Li et al., 2014; Marthaler et al., 2014a; was amplified from the PDCoV KNU14-04 strain (Lee and
Wooetal.,2012). Lee, 2014) with the following primer pair: KNU14-04-N-Fwd
Am o ng thestructuralproteinsofcoronaviruses,theNprotein (5(cid:3)-G CCGGT CGAC ATG GCTGCACC AGTAG- 3(cid:3))and KNU14-04-N-Rev
is abundan tly produced in infecte d cells and has m ult ip le func- (5(cid:3)-CGGCTCTAGACGCTGCTGATTCCTGC-3(cid:3)),w her eunderlinesindi-
tionsinviralreplicationandpathogenesis(McBrideetal.,2014). cate the SalI and XbaI restriction enzyme sites, respectively. The
Asthesolestructuralcomponentoftheviralcapsid,theNprotein PCR amplicon was initially inserted into the pBudCE4.1 vector
ofcoronavirusesinteractswiththenucleicacidanditselfforself- (Invitrogen)thatcontainsamycepitopeand6repetitivehistidine
associationtoprotecttheviralgenomefromextracellularagents, codons,andtheresultingplasmidpBud-PDCoV-Nwasverifiedby
servingasthecriticalbasisforribonucleoprotein(RNP)complexes nucleotidesequencing.BecausethePDCoVgenomecontainsone
duringvirusassembly(McBrideetal.,2014).Theentirelifecycle accessoryNS7genewithintheNgeneinadifferentreadingframe,
ofcoronavirusestakesplaceinthecytoplasmofinfectedcells,and thepresenceofNS7couldaffectourfunctionalstudiesofthePDCoV
accordingly, the N protein is distributed mainly in the cytoplas- Nprotein.Topreventanysuchsideeffects,thetranslationiniti-
mic compartments. In addition to their cytoplasmic localization, ation codon and the fifth codon of the NS7 ORF were modified
coronaviral N proteins are commonly localized to the nucleolus, to disrupt its expression by pBud-PDCoV-N. To accomplish this,
suggesting their non-structural functions in ensuring successful overlappingPCRwasconductedtosimultaneouslychangetheATG
virusinfection(Hiscoxetal.,2001;McBrideetal.,2014).Althougha startcodonandthefifthcodonoftheNS7genetoTTAandTAAat
varietyofstudieshaveconfirmedthatNpossessesmultifunctional genomicnucleotidepositions24,096–24,098and24,108–24,110,
significanceincoronavirology(McBrideetal.,2014),detailedchar- respectively, using pBud-PDCoV-N as a template with the fol-
acteristicsofthisproteinanditsroleinthereplicationofPDCoV lowingprimersfortheT24097C/T24109Amutation:NS7-KO-Fwd
remainun kn own. (5(cid:3)-GGC AAcGGA GT TCC GCTaAACTCCGCCAT C-3(cid:3)) and NS7-KO-Rev
In th e present study, alterations in cellular gene expression (5(cid:3)-GATGGCGGAGTTtAGCGGAACTCCgTTGCC-3(cid:3)) ,whe relowercase
that are caused by the N protein were evaluated as a first step letters indicate the mutated nucleotides. Both mutations were
towardunderstandingthebiologicalroleoftheNproteininPDCoV translationallysilentwithrespecttotheORFencodingtheNpro-
replicat ion.Toaccomp lish thistask,s tabl ep orc in e-origin ce lllines tein,andthere sultin gpla smidpB ud -PD CoV- Nw/oNS7w asv er ified
constitutive lye xpressingt heP DCoV Nprot einweregener ated and bynu cleo tide sequenci ng.Afrag mentofPDCoVNw/oNS7cD NAthat
characterizedinthisstudy.Changesinexpressionpatternsofvar- was prepared from pBud-PDCoV-N was then subcloned into the
iouscellularproteinsintheNprotein-expressingporcinecellsin pFB-Neoretroviralvector(Stratagene,LaJolla,CA)usingtheSalI
comparisonwithcontrolcellswereexaminedbyproteomicanal- andEcoRIrestrictionsitestoconstructthePDCoVNgeneexpression
ysisatdifferenttimepoints.Ourproteomicdataareexpectedto plasmidpFB-Neo-PDCoV-N-myc/HisthatproducesrecombinantN
providenovelinformationforbetterknowledgeoftheproperties protein.
andfunctionsoftheNproteinduringPDCoVinfection.
2.3. GenerationofstablePK-15celllinesexpressingthePDCoVN
protein
2. Materialsandmethods
The retrovirus gene transfer system (Stratagene) was used
2.1. Cellsandantibodies to generate cell lines constitutively expressing the recombinant
PDCoVNgeneoranemptyvectoronlyasdescribedelsewhere(Lee
HEK-293T cells (CRL-1573) were purchased from the Ameri- et al., 2010; Nam and Lee, 2010; Oh and Lee, 2012). Antibiotic-
can Type Culture Collection (ATCC, Manassas, VA) and cultured resistant continuous cell clones were analyzed by RT-PCR to
in Dulbecco’s modified Eagle medium (DMEM) with high glu- determinethepresenceofthefull-lengthNgene,andthepositive
cose(Invitrogen,Carlsbad,CA)with10%fetalbovineserum(FBS; clones(PK-PDCoV-NandPK-Neo)wereamplifiedforsubsequent
Invit rogen) and antibiotic– ant imyco tic s oluti ons (10 0×; In vitro- experim ents.
gen).PK-15cellsweregrowninRPMI1640medium(Invitrogen)
supplementedwith10%FBSandantibiotic–antimycoticsolutions 2.4. Immunofluorescenceassay(IFA)
(100×). The c ells w ere ma intai ned at 37◦C in an atm osphere
of humidified air containing 5% CO . PAM-pCD163-N cells that PK-PDCoV-Ncellsweregrownonmicroscopecoverslipsplaced
2
stably express the N protein of porcine reproductive and respi- in6-welltissuecultureplates.At48hpost-seeding,thecellswere
ratory syndrome virus (PRRSV; Sagong and Lee, 2010) were fixedwith4%paraformaldehydefor10minatroomtemperature
cultured in RPMI 1640 medium (Invitrogen) supplemented with (RT) and permeabilized with 0.2% Triton X-100 in PBS at RT for
10% FBS, an tibiot ic–ant imycotic solutions (1 00×), 10mM H EPES 10m in. T he cells were block ed us ing 1% bovine se rum al bum in
(Invitrogen), 1mM sodium pyruvate (Invitrogen), and nonessen- (BSA)inPBSfor30minatRTandthenincubatedwithananti-Histag
tial amino ac id s (1 00×; Inv itrogen) in the presen ce o f 50(cid:2)g/ml orant i-m yc ant ibo dyfo r 2h .Aft erwa shing5tim esin P BS,thec ells
Zeo cin (Inv itroge n) and 200(cid:2)g/ml G4 18 ( Invitrogen ). The anti- we reincuba tedfor1h at R Tw itha goatanti -m ouse se cond ary anti-
PRRSVnucleocapsid(N)monoclonalantibody(MAb)andanti-myc bodyconjugatedwithAlexaFluor488(MolecularProbes,Carlsbad,
MAbw erepurchased fro mMEDIAND iagnostic s(Chun che on,South CA).T hecellswe refin allyc ounte rsta inedwith4 (cid:3),6-diam idino-2-
Korea ) and Invitroge n, re spectivel y. Antibodie s to the 6× histi- phen ylin dole (DAPI; Sigma ,St.Louis,MO),a ndth ecellstainingwas
dinetag,glucose-regulatedprotein78(GRP78),heatshockcognate visualizedbythefluorescenceLeicaDMILLEDmicroscope(Leica,
138 S.Lee,C.Lee/VirusResearch208(2015)136–145
Wetzlar,Germany)oraConfocalLaserScanningmicroscope(Carl 48h.Forcross-linkingstudies,thecellswerewashedtwicewith
Zeiss,Gattingen,Germany). coldPBSandthenincubatedatRTfor30minwitha2mMsolution
of a mem bra ne p ermeable a nd th iol -cle ava ble cr o ss -link er, 3,3(cid:3)-
2.5. Fluorescence-activatedcellsorting(FACS)analysis dithiobis(succinimidylpropionate)(DSP;Pierce),dissolvedin10%
dimethylsulfoxide(v/vinPBS).Thereactionwasquenchedwith
The N expression in PK-PDCoV-N cells was analyzed by flow 50mMTris–HCl[pH7.5]andincubatedforanadditional15min.
cytometry. The cells were trypsinized at 48h post-seeding and Thecellswerelysedwithlysisbuffer,andtheresultantcelllysates
centrifuged at 2 50× g (Han il Centrifug e F LET A 5) for 5min. The wer ethe nsub jected toa West ernblo tass aya sdescribe da bove.
cell pellet was washed with cold washing buffer (1% BSA and
0.1% sodiu maz ideinPB S),an d106 cellswer eresus pen dedi n1%
form aldehyd esolu tio ninco ldw ashbuffe rforfi xationat4◦C in the 2.9. Preparationofproteinsamplesforproteomicanalysis
darkfor30minfollowedbycentrifugationandincubationofthe
pelle tin 0.2 %Tr itonX-10 0i nPBSat37◦C for1 5minforp erm e- Pellets of cultured cells were washed twice with ice-cold
abilization.Aftercentrifugation,thecellpelletwasresuspendedin PBS, placed in sample lysis solution consisting of 7M urea,
asolutionoftheprimaryanti-Histagantibodyornormalmouse 2M thiourea, 4% 3-[(3-cholamidopropyl) dimethyammonio]-1-
IgG1(SantaCruzBiotechnology)andthemixturewasincubatedat propanesulfonate(CHAPS),1%dithiothreitol(DTT),2%pharmalyte
4◦Cf or30m in.T hecellswerewa shed an dallowe dtor eactwitha n (pH3.5–10,Amer shamBio scie nces),and1m Mben za midine,and
AlexaFluor488-conjugatedanti-mouseIgGsecondaryantibodyat were then sonicated for 10s using a Sonoplus device (Bandelin
4◦Cfo r30m ininthedark.Th estainedce llsw erewashe dagainan d Electr onic, Germany) . Th e sa m ples we re subseq uently incubated
anal yze do nth e BD FACSA ria IIIflow cyto meter (BDBio scien ces, for 1h at 4◦C. After c entr ifugation at 1 5,000×g for 1 h at 4◦C,
Belford,MA). insoluble cellular debris were discarded, and the supernatant
was colle cted and stored at − 80◦C until use. The protein con-
2.6. Cellproliferationassay centrations were measured by the Bradford assay as described
previously(Bradford,1976).
ThegrowthpropertiesofcellsexpressingPDCoVNproteinand
controlcellsweredeterminedbya3-(4,5-dimethylthiazol-2-yl)-
2,5-diphenyltetrazolium bromide (MTT) assay (Sigma) detecting 2.10. Two-dimensionalgelelectrophoresis(2DE)andimage
cellviabilityasdescribedpreviously(KimandLee,2013).AllMTT analysis
assayswereperformedintriplicate.
Proteinsampleswereanalyzedby2DEusingcommercialIPG
2.7. CellfractionationandWesternblotanalysis drystrips(pH4–10,24cm;GenomineInc.,Pohang,SouthKorea)
forthefirst-dimensionalseparation(isoelectricfocusing;IEF)and
WholecelllysateswerepreparedfromPK-PDCoV-Ncellsgrown sodiumdodecylsulfate-polyacrylamidegelelectrophoresis(SDS-
at 5×105 cell s/well in 6-w ell tissu e cul ture plates a t ind icated PAGE)f orthese conddimension.TheIP Gd rystripswerel oaded
tim e p oints using ly sis buffer as desc ribed p revious ly (Nam and indepe nde ntly with20 0(cid:2)gofeach pro tein sam plean drehy drated
Lee, 2010). For cell fractionation, PK-PDCoV-N cells were frac- overnightinrehydrationbuffer(7Murea,2Mthiourea,2%CHAPS,
tion ated us ing the N uclear/Cytoso l Fractionatio n Kit (BioV ision, 1% DTT, a nd 1% pharma lyte). IEF w as pe r for med at 2 0◦ C using
Mountain View, CA) according to the manufacturer’s manuals. a Multiphor II electrophoresis unit and an EPS 3500 XL power
The protein concentrations of the cell lysates were determined supply (Amersham Biosciences) with the following parameters:
usingtheBCAproteinassay(Pierce,Rockford,IL).Thecelllysates gradientincreasefrom150to3500Vfor3hand3500Vforatotal
were mix ed w ith 4× NuPA GE sam ple buffe r (I nvit roge n) and of96,000 Vh.Foll owin gIEF se parat io n,t h e IPG strips w ere i ncu-
boiled at 70 ◦C for 10 min. Equa l amoun ts of t otal protein w ere ba tedfor 10 m inatRTw ith gentleshak ingi neq uilibra tionb uffer
separated in a NuPAGE 4–12% Gradient Bis-Tris Gel (Invitrogen) (50mMTris–ClpH6.8,containing6Murea,2%SDS,and30%glyc-
undernon-reducingorreducingconditions,andelectrotransferred erol)containing1%DTTandweresubsequentlyincubatedinthe
onto an Immobilon-P membrane (Millipore, Billerica, MA). The equilibrationbuffercontaining2.5%iodoacetamideunderthesame
membranes were blocked with 3% powdered skim milk (BD conditions.Eachequilibratedstripwastheninsertedinto10–16%
Biosciences) inTBS (10mM Tris–H Cl[ pH8.0],15 0mM NaCl) with polyacrylam ideg els(20cm× 24cm )an dSDS -PAGEw asru nusing
0.05%Tween -2 0(TB ST) at4 ◦Cfor2h and react edw itht hepri mary a Hoefer DALT 2D s yst em (A m ersh am Biosciences ) at 20◦ C for
antibo dy agains t the 6 × His -tag , G RP7 8, HSC7 0, or (cid:3)- actin at 1 700Vh accord ing tothem anufacturer’ sinstructions .Th e2Dg els
4◦Cover night.Th ebl otsw erethen incuba tedwith ah orserad ish were st ai nedbythe si lver stainingmetho dasdescribed pre vio usly
peroxidase(HRP)-labeledgoatanti-mouseIgGorgoatanti-rabbit withsomemodifications(Oakleyetal.,1980).Tocompensatefor
IgGantibody(SantaCruzBiotechnology)atthedilutionof1:2000 thevariabilityof2DE,threeindependentexperimentswerecon-
for 2h at 4◦C . Final ly, th e proteins were v isua lized by en hanced duc tedforfurt he rstat istical analysis.
chemiluminescence (ECL) Reagents (Amersham Biosciences, Pis- Thestainedgelswereimagedusingahigh-resolution2DgelCCD
cataway,NJ)accordingtotheinstructionsofthemanufacturer.To imageanalyzer,Dyversity(Syngene,Frederick,MD),andquantita-
analyzetheexpressionkineticsofcellularproteinsinPK-PDCoV-N tiveanalysisofthedigitizedgelimageswascarriedoutusingthe
cells,thebanddensityofeachproteinwasquantifiedrelativeto PDQuestsoftware(version7.0,Bio-Rad,Hercules,CA)accordingto
(cid:3)-act inu singd ensitom etr ywit htheW righ tCellImag ingFacil ity theproto colsprov idedby the manufac turer.Dat are presenting 3
(WCIF) version of the ImageJ software package (http://www. independent2DEexperimentsforeachsamplewerestatistically
uhnresearch.ca/facilities/wcif/imagej/). analyzedusingStudent’st-test,andp-valuesoflessthan0.05were
consideredtobestatisticallysignificant.Thequantitativedatafrom
2.8. Chemicalcross-linking eachproteinspotwerenormalizedbasedonthetotalvalidspot
intensityforeachgel.Onlyproteinspotsthatshowedsignificant
A chemical cross-linking assay was performed as described differenti ale xpres sion (p<0 .05)wit ha±2 -fold consist entchange
previously(LeeandYoo,2006).Briefly,PK-PDCoV-NcellsandPAM- intheexpressionlevelincomparisonwiththecontrolsamplewere
pCD163-N cells were grown in a 6-well tissue culture plate for selectedformassspectrometry(MS)analysis.
S.Lee,C.Lee/VirusResearch208(2015)136–145 139
2.11. Proteinidentificationbypeptidemassfingerprinting(PMF) (Woo et al., 2012). PDCoV is the fifth coronavirus infecting pigs
in addition to transmissible gastroenteritis virus, porcine respi-
Eachselectedproteinspotwasexcisedmanuallyfromthesilver- ratory virus, porcine hemagglutinating encephalomyelitis virus,
stainedgelsandwasenzymaticallydigestedin-gelaspreviously andporcineepidemicdiarrheavirus(PEDV).Todate,interactions
described (Shevchenko et al., 1996) and using modified porcine between this novel virus and the host have not been studied
trypsin(Sequencinggrade;Promega,Madison,WI).Thegelpieces yet. Furthermore, alterations of cellular protein expression in
werewashedwith50%acetonitrile(ACN),air-driedthoroughlyat responsetoPDCoVoreachviralproteinuponinfectioncurrently
RT,an dthenr ehydr ated for8–10ha t37◦C withmod ifiedsequen c- remain u nd etermin ed . In t he cu rrent s tudy, the PDCo V N pro-
ing grad epor cinetrypsin (8– 10ng / (cid:2)l ).The prote olyticrea ctionwas tein wa s chosen in the cu rren t study for the pro teomic a na lysis
term inate d by ad dition of 5(cid:2) l of 0.5 % tri fluoroaceti c acid (T FA). to e valua te spec ific ho st cellul ar res pon ses, which is n ot only
The tryptic peptides were recovered by combining the aqueous the most abundant viral component but also performs several
phase from several extractions of gel pieces with 50% aqueous biological functions in completing viral replication. For this pur-
ACN.Afterconcentration,thepeptidemixturewasdesaltedusing pose, sublines of PK-15 cells were established to stably express
C Zi pTips (Millipore),an dth epeptid eswere elut edin1–5 (cid:2)lof recom binant P DC oV N unde r the control of a r etrovir al long-
18
50%ACN.Analiquotofthissolutionwasmixedwithanequalvol- terminal-repeat (LTR) promoter. Ten generated cell clones were
ume of a sat urated sol utio n of (cid:4)-cy ano -4-hyd roxyc inn amic acid initially collecte d and subjected to RT -PCR and Wes tern blo tting
(CHC A; Si gma)in50 %ACN/0 .1% TFA,and1(cid:2)lofthismixture was to confi rm the N gen e expressi on at mRN A an d protei n levels,
immediatelyspottedontothetargetplate.MALDI-TOFanalysiswas respectively(datanotshown).AccordingtotheresultsoftheWest-
performedonaMicroflexLRF20instrument(BrukerDaltonics,Bil- ern blot analysis, one PK-PDCoV-N cell clone that constitutively
lerica, MA) as described by Fernandez et al. (1998). The spectra expressed the highest levels of N was selected for subsequent
were collected from 300 shots per spectrum over the m/z range studies.
600–3000 and calibrated by two point internal calibration using To characterize PK-PDCoV-N cells, we examined intracellular
trypsinauto-digestionpeaks(m/z842.5099,2211.1046).Thepeak expressionlevelsofNbyIFA,FACSanalysisandWesternblotting.As
list was generated using Flex Analysis 3.0. We used the follow- showninFig.1A,thespecificcellstainingwasclearlyevidentwhen
ing threshold for peak-picking: 500 for minimum resolution of PK-PDCoV-N cells were reacted with the anti-His tag antibody,
monoisotopicmass,5forS/N.ThesearchprogramMASCOTfrom confirming the constant high expression level of the N protein.
MatrixScience(http://www.matrixscience.com/)wasusedforpro- Furthermore,themajorityofthecellsconsistentlyexhibitedspe-
tein identification by PMF. The following parameters were used cific fluorescent signals, indicating a homogenous population of
forthedatabasesearch:trypsinasthecleavingenzyme,amaxi- cellsintermsofNexpression(Fig.1B).Time-courseWesternblot
mumofonemissedcleavage,iodoacetamide(Cys)asacomplete analysis revealed that the PK-PDCoV-N cells stably express and
modifi ca tion ,oxidat ion(Met) asapartialmo dificat ion , monoiso- accumul ate robus t lev els of a ∼45kDa reco mbinan t N pro tein,
topicmasses, andamas stolera nc e of±0.1 Da.ThePMFa cceptance largerthani tspredi ctedm ole cu larw eigh tofapproxima tel y38kDa
criterionwasprobabilityscoring. possiblyduetopost-translationalmodificationsandthepresence
of C-terminal myc and histidine tags (Fig. 1C). In addition, the
2.12. Quantitativereal-timeRT-PCR overallgrowthkineticsofPDCoVNgene-expressingPKcellswas
found to be similar to that of the parental PK-Neo cells, indicat-
TotalRNAwasextractedfromthelysatesofPK-PDCoV-Ncells ingthatthePDCoVNexpressionhasnoeffectoncellproliferation
at24and48hpost-seedingbytheTRIzolReagent(Invitrogen)and (Fig.1D).
wastreatedwithDNaseI(TaKaRa,Otsu,Japan)accordingtothe Self-association of the N protein has been observed in many
manufacturer’sprotocols.TheconcentrationsoftheextractedRNA viruses,includingcoronaviruses,andisessentialforassemblyofthe
weremeasuredusingaNanoVuespectrophotometer(GEHealth- viralcoreconstructingthebasicarchitectureofviruses.Sequence
care,Piscataway,NJ).Quantitativereal-timeRT-PCRwasperformed analysisofthePDCoVNproteinindicatedthatitiscomposedof
usingaThermalCyclerDiceRealTimeSystem(TaKaRa)withgene- 342 amino acids residues and contains no cysteine residues. As
specificprimersetsasdescribedpreviously(SagongandLee,2011). expected, no band corresponding to a disulfide-linked N dimer
The primer sequences are available upon request. The RNA lev- wasdetectedbySDS-PAGEundernon-reducingconditions(Fig.2A,
els o f cellul ar genes w ere normalize d to p orcine (cid:3) -act in mR NA, lane 4), indic ati ng that th e PDC oV N protein does not u nde rgo
and relative quantities (RQ) of mRNA accumulation were calcu- cysteine-linkedhomodimerization.Asapositivecontrol,thePRRSV
lated usingt he2−(cid:2)(cid:2)Ct meth od (Livak andSchmittge n,200 1).To Nproteininthe N-expressingstable PA M cellsw asclear lyd emon-
detect alterations of cellular mRNA levels in the presence of the strated to form 35-kDa N-N dimers under the same conditions
PDCoVNprotein,therelativefoldchangeofeachcellulargenewas (Sagong and Lee, 2010; Fig. 2A, lane 2). The ability of N to form
calculatedinaccordancewiththecomparisonofPK-PDCoV-Nand non-covalentdimerswasfurtherinvestigatedinachemicalcross-
controlPK-Neocells. linkingexperiment.AsshowninFig.2B,thePRRSVNproteinin
PAM-pCD163-Ncellsformedanumberofhigher-orderoligomers
2.13. Statisticalanalysis (lane 1) as reported previously (Wootton and Yoo, 2003). When
the N protein in PK-PDCoV cells was subjected to cross-linking,
We used the Student’s t-test for all statistical analyses, and numerousmultimericformsoftheNproteinwereidentified(lane
differenceswithp-values<0.05wereconsideredstatisticallysig- 2),indicatingthattheNproteinofPDCoVexistsintheformofnon-
nificant. covalently linked oligomers that are used for assembly the viral
capsid.
3. Results We next determined whether the recombinant N protein
expressedinPK-PDCoV-Ncellsissubjecttonucleolarlocalization
3.1. Generationandcharacterizationofstableporcine-origincell thatisknowntobeacommonfeatureofcoronaviralNproteins.The
linesexpressingthePDCoVNprotein stainingpatterninPK-PDCoVcellswasfoundtobepredominantly
cytoplasmicandnucleolic;thispatternpersistedforupto60hafter
Asetofsevennovelmammalianandaviancoronaviruseswas seeding(Fig.3A).NearlyallcellsexpressingPDCoVNshoweddis-
recently discovered, including one porcine coronavirus, PDCoV tinctfluorescentsignalsinthenucleolusat48hpost-seeding,and
140 S.Lee,C.Lee/VirusResearch208(2015)136–145
Fig.1. ConstitutiveexpressionoftheNproteininPK-PDCoV-Ncells.(A)ImmunofluorescenceassayofthePDCoVNprotein.PK-PDCoV-Ncellsgrownina6-welltissueculture
platewerefixedwith4%formaldehydeatindicatedtimepointsandincubatedwiththeHistag-specificantibodyfollowedbygoatanti-mousesecondaryantibodyconjugated
with Alexa green (up per panels).Thec el lswereth enco unters tain edwithDA PI(m idd lep anels)and examined usinga flu oresc entmicrosc opeat400 ×magnifi cation.(B)
IntracellularexpressionofPDCoVN.Onemillioncellswereharvestedat48hpost-seedingandincubatedwithanti-Histagantibody(grayhistogram)oranisotypecontrol
(whitehisto gram)anda na lyzedb y flow cytome try.( C)Im munoblot an aly si softheNpr otein .PK-PDCo V-N cellswer egr ownina 6-we lltissuecu ltu rep lateat 4×105
cells/wellfor6,12,24,36,and48h.CelllysateswerepreparedattheindicatedtimepointsandsubjectedtoWesternblotanalysiswithanti-Histagantibodytodetermine
theexpre ssio nl eve lof the Np rote in (up perpan el).T heblotwa s also reactedw ithm ouseM Ab against(cid:3)- act intocon firm equalpr otein loading (low erpanel) .(D ).Growth
kineticsofthestablePDCoVNproteinexpressingcells.CellproliferationwasmeasuredattheindicatedtimesbytheMTTassay.Valuesarerepresentativeofthemeanfrom
threeindependentexperimentsanderrorbarsdenotestandarddeviations.
thereafter,thePDCoVNproteinwaslocalizedmainlytothecyto- 3.2. 2DEanalysisofporcinecellsconstitutivelyexpressingthe
plasmat72hpost-seeding.ThenucleolarlocalizationofPDCoVN PDCoVNprotein
wasconfirmedbytransienttransfectionofBHK-21orSTcellswith
theplasmidpBud-PDCoV-N(Fig.3B).Thecellfractionationassay Cellular proteins in the parental PK-Neo cells and PK-PDCoV-
alsorevealedthepresenceoftheNproteininboththecytoplasmic Ncellswereextractedandsubjectedto2DEanalysistocompare
and nucleic fractions (Fig. 3C). These observations demonstrated the host protein expression profiles. To reduce the variability of
that, like N proteins of other coronaviruses, PDCoV N protein is gel electrophoresis, three independent 2DE analyses of cellular
mostlydistributedinthenucleolusalongwiththecytoplasmand extracts from control or N gene-expressing PK cells were per-
hasaconservedsubcellularlocalizationproperty. formed,andspotintensitydatafromtriplicategelswereselected
forstati stica lana lysis.On avera ge,1 090±63p rote inspo tswere
resolved by 2DE within a pH gradient 4–10 and were visualized
using silver staining; the molecular weights of the spots ranged
from 10 to 200kDa. These spots were used for the comparative
analysis.Fig.4Ashowsrepresentativeimagesof2DEgelsfromcon-
trolPKcells(upperpanel)andNgene-expressingPKcells(middle
andlowerpanels).Atotalof43proteinspotswereinitiallyfound
tobedifferentiallyexpressedinPK-PDCoV-Ncellswhencompared
withcontrolPK-Neocells.Onthebasisofthestatisticalcomparison,
onlythosespotsthatconsistentlyshowedalterationinexpression
levelsbetweenPK-PDCoV-Ncellsandthecontrolcellswerechosen
forfurtherproteinidentification.
3.3. Identificationofthedifferentiallyexpressedproteins
To identify the differentially expressed cellular protein spots
in PK-PDCoV-N cells at different time points, 10 protein spots
withastatisticallysignificantalteration,including8up-regulated
and 2 down-regulated protein spots (Fig. 4B), were selected
Fig.2. Homo-oligomerizationofthePDCoVNprotein.(A)Absenceofthedisulfide-
and manually excised from the stained gels. Subsequently, the
linkedNhomodimers.CelllysateswerepreparedfromPAM-pCD163-NandPK-
PDCoV -N cellsgrownfo r48 handsu bjecte dtoWest ernblo tanalysisinthe prese nce trypsin-digestedspotsweresubjectedtoMALDI-TOFanalysis.With
(lanes1a nd3) orabs enc e( la nes2 and4)of (cid:3) -mercapt oeth anol((cid:3)M E ).M onomers combinedPMFa ndda tabas esearchin g, identityofa ll10pro teins
(N)an d dimm e rs (2N)ofth ePRR SV Np ro tei nareindicatedaspo sitivec ontrols.(B) wassucce ssfull yde termined .Informatio nonall th ese pr oteinsin
Np rote inoligom eriza tio nby DSPc ro ss-linkin g.E achcellli ne express ingPRRSV N
PK-PDCoV-Ncells,withtheirproteinscoresandsequencecoverage,
(lane1)orPDCoVN(lane2)wasindependentlycross-linkedwith2mMDSPfor
issummarizedinTable1.Tobetterunderstandtheimplications
n30o nm-rined. uCceilnl glycsoantedsi twioenrse. Mpruelptiamreedri canfodr msusbojfeNctepdro ttoe iWnseosftebront hbvloirtu asneaslayrseiss huonwdenr. of the cellular re spons es to the PD CoV N pro tein , we further
S.Lee,C.Lee/VirusResearch208(2015)136–145 141
Fig.3. NucleolarlocalizationofthePDCoVNproteinexpressedinPK-PDCoV-Ncells.(A)SubcellularlocalizationofNincellsstablyexpressing(A)andtransientlyexpressing
(B)PDCoVN.Cellswerefixedatindicatedtimepointspost-seedingorpost-transfectionandincubatedwithanti-Hisoranti-myctagMAbfollowedbyAlexagreen-conjugated
goa tanti-m o usese cond aryan tib ody.The cellsw erevi sualizedusing a fluorescentmicro scop eat400×m agn ification .Nu cleus(Nu )a ndnu cleolus(N o) arein dicatedbyarrows.
(C)NuclearandcytoplasmicfractionationofPKcellsexpressingPDCoVN.EachnuclearandcytosolicfractionwaspreparedfromPK-PDCoV-Ncellsatindicatedtimepoints
pos t-seedin gan dsubjected toWesternb lot an alysis withthea ntibody s pecifi cforHis -tag (toppan el),Sp1 asa nuclearp rotein marker(sec ondp an el),or(cid:4)- tubul inasa
cytosolicprot einm arker(th ird panel).A llblo tswere alsor eact edwith(cid:3) -actinan tib odytov erify equalp rote in lo ading(b ottomp anel).
categorizedtheidentifiedproteinsbybiologicalprocessesaccord- We were able to detect mRNAs corresponding to nearly all pro-
ingtotheGeneOntologydatabaseasdescribedpreviously(Zhang teins identified by proteomics, except for histone H4. Although
et al., 2009). These proteins showing altered expression were the altered expression levels of the remaining 9 proteins were
associated with various cellular functions including intracellu- consistent with the real-time RT-PCR results, we observed only
lar transport, metabolic processes, gene regulation, the stress modestincreaseorreductioninmRNAlevels.Theseresultscould
response,proteinsynthesis,cytoskeletonnetworks,andcelldivi- beexplainedthecasethecorrelationbetweenmRNAandprotein
sion.Sincechangesincellularproteinexpressionmaybeattributed abundancecouldbeinsufficienttopredictproteinexpressionlev-
to alterations in the corresponding mRNA levels, transcriptional elsfromquantitativemRNAdata(Gygietal.,1999),suggestingthat
changes for all the identified proteins were tested by real-time thedifferencesinproteinlevelsmightbeduetopost-translational
RT-PCR to confirm the results of the proteomic analysis (Fig. 5). modificationsorproteinstabilityratherthanmRNAlevels.
Table1
ListofdifferentiallyexpressedcellularproteinsinPDCoVN-expressingPKcells.
Spotno. Proteinname Accessionno. MW(kDa) pI Protein Sequence Function
score coverage(%)
Down-regulatedproteins
3006 Tran slocon-associatedprotein gi|545887405 19.017 5.49 107 38 ProteintransporttotheER
subunitdeltaisoform
4009 Ferritin gi|346421372 20.165 5.75 141 65 Metabolicprocess
Up-regulatedproteins
0019 H istoneH4 gi|354480096 15.032 11.02 177 53 Generegulation
1627 78kDag luc ose-regulated gi|466006301 72.449 5.06 163 35 Stress response
protein
1636 Heatshock70kDaprotein8 gi|345441750 71.050 5.37 281 36 Stressresponse
5735 Ezrin gi|744614044 67.571 6.79 186 44 Linksa ctintotheplasmamembrane
6004 Perox iredoxin-5, gi|47523086 17.484 5.71 126 42 Metab olicp ro cess
mitochondrial
6108 Phosphoglyceratemutase1 gi|4505753 28.9 6.67 222 62 Metabolicprocess
6310 Septin2 gi|34509096 9 41.8 13 6.19 215 51 Cytokinesi s
7733 Elonga ti onfactor2 gi|335282386 96.262 6.41 351 47 Proteinsynthesis
142 S.Lee,C.Lee/VirusResearch208(2015)136–145
Fig.4. Representativegelimagesshowingspotsthatdisplayedsignificantlydifferentialexpression.(A)Themagnifiedpicturesrepresenttheproteomicanalysisofcontrol
PK-Neo(upperpanel)andPK-PDCoV-Ncells(middleandlowerpanels)andexhibiteddifferentiallyregulatedproteinsidentifiedinNgene-expressingcells.Four-digit
numbersonthetoprepresentindividualspotidentification.(B)Thequantityofeachspotwasnormalizedbasedonthetotalvalidspotintensityforeachgelandtherelative
foldchangeofeachspotwasthencalculatedbetweencontrolPK-NeoandPK-PDCoV-Ncells.Datarepresentingthreeindependent2DEexperimentsforeachsamplewere
statisticallyanalyzedanderrorbarsrepresentstandarddeviations.*P=0.001–0.05.
3.4. Alteredexpressionoftheheatshockprotein70(HSP70) expressionofthesestress-responseproteinsundertheinfluenceof
familyinresponsetothePDCoVNprotein PDCoVN,weperformedtime-courseWesternblotanalysis.Total
cellularlysateswerepreparedfromPK-PDCoV-Ncellsatdifferent
TwomembersoftheHSP70family,glucose-regulatedprotein timepoints,andtheexpressionkineticsoftheGRP78andHSC70
78(GRP78)andheatshockcognate70-kDaprotein(HSC70),were wascomparedbetweencontrolandNprotein-containingextracts.
foundtobeup-regulatedinthePDCoVN-expressingcellsbythe HigherexpressionofbothproteinswasfirstevidentinPK-PDCoV-
proteomic analysis. To further verify the dynamic alterations in Ncellsasearlyasat12hpost-seedingincomparisonwithcontrol
PK-Neocells,andtheproductionofbothproteinswaspersistently
highduringthelatertimepoints,suggestingthattheirenhanced
expression is dependent on the N protein (Fig. 6). These results
wereconsistentwiththeproteomicanalysisof2DEgelsandreal-
timeRT-PCR,demonstratingthatthesynthesisofGRP78andHSC70
isindeedup-regulatedinresponsetoexpressionoftheNprotein
ofPDCoV.
4. Discussion
Sincevirusesareobligateintracellularparasites,theymustuti-
lize the cellular machinery and biosynthetic components of the
hostcellfortheirownreplication.Afterviralinfection,theinfected
cellslaunchanumberofhostantiviraldefensiveresponses,which
are turned on to eliminate the invading viruses. On the other
hand, viruses employ their own evasion strategies to complete
their replication and to successfully spread to neighboring cells.
This series of interactions between the virus and host results in
compensatorymodificationsincellulargeneproduction.Accord-
ingly,numerousstudieshavebeenextensivelyconductedbymeans
of various molecular and genomic methods to understand how
Fig.5. TranscriptionalalterationofidentifiedcellulargenesinPK-PDCoV-Ncells. the altered host gene expression affects viral infection and the
The mR NAlevelofeach genewasa sse ssedbyqu antitativ ereal- tim eRT-PCRand nor- asso ciatedp atho genic processes.T heprot eomic analysis coup ling
mal izedto that of porc ine(cid:3) -acti n.Relativ eq uantities(RQ )ofmRN Aaccum ula tion high-resolu tion2DEan dMALDI-T OF/M Sisatool thatcan generate
wereeva lu ated by 2−(cid:3)(cid:3)Ctm ethoda ndthere lativefoldc hang eo feach genewasthen
ampledataoncellularproteinprofilesmodifiedbyviralreplication.
calculatedbetweencontrolPK-NeoandPK-PDCoV-Ncells.Resultsareexpressedas
Withtheproteomictechniques,itisnowpossibletoidentifyrel-
rthepe rmeseeannt svtaalnudesa rfdrodmev tihatrieoen isn.d*Pep=e0n.0d0e1n–t 0e.x0p5e;r†iPm<e0n.0ts0 i1n. duplicate and error bars ative cha ngesinpro teinabunda nc ef orev aluation of hostcell ular
S.Lee,C.Lee/VirusResearch208(2015)136–145 143
wasfoundtobepredominantlypresentinboththecytoplasmand
nucleolusofPK-PDCoV-Ncells.ThelocalizationofnidovirusNpro-
teinstothenucleolusmaybenecessaryforcontrolofRNAsynthesis
orribosomebiogenesisviaassociationwithribosomalsubunitsand
interaction with nucleolar proteins (Chen et al., 2002; Lee et al.,
2006;Wurmetal.,2001;Yooetal.,2003;).Similarly,thePDCoV
N protein may participate in such a viral strategy to favor viral
replication and pathogenesis. In addition, the nucleolar localiza-
tionsequencedetectorprogram(http://www.compbio.dundee.ac.
uk/www-nod/)predictedthatPDCoVNharborsaputativenucleo-
larlocalizationsignal(NoLS)consistingofastretchofbasicamino
acids.Therefore,furtherresearchisneededtoidentifyafunctional
NoLStoconfirmtheintracellularlocalizationofthePDCoVNpro-
tein. These biological characteristics of N gene-expressing cells
haveyettobeconfirmedusinganauthenticNproteininPDCoV-
infectedcells,butaccordingtoourresults,PDCoVNappearstoact
asamultifunctionalproteinplayingstructuralandnon-structural
rolescontributingtocompletionofviralreplication.Ourproteomic
datarevealedthat10differentiallyexpressedcellularproteinsare
identifiableinPDCoVNgene-expressingporcinecells.Theproteins
thatweidentifiedinthisstudyareinvolvedindiversecellularpro-
cesses:metabolism,thestressresponse,proteinbiosynthesisand
transport,cytoskeletonnetworksandcellcommunication,andcell
division.Thesignificanceofthefunctionalrolesoftheselectedhost
proteinsaffectedbytheinteractionofthePDCoVNproteinwiththe
hostcellisdiscussedbelow.
The most interesting finding in the present study is that two
cellular chaperone proteins belonging to the HSP70 family are
up-regulatedconcomitantlybytheNproteinofPDCoV.Thefirst
up-regulatedproteinisGRP78incellsexpressingthePDCoVNpro-
tein,whichisassociatedwithendoplasmicreticulum(ER)stress.In
eukaryoticcells,theERisthemajorsiteforsynthesisandfolding
oftransmembraneandsecretedproteins,andaccordingly,animal
viruses also use the ER as a site of synthesis and processing of
theirownproteins.TheamountofproteinenteringtheERcandif-
fer under physiological and environmental conditions. If protein
synthesis exceeds the folding capacity of the ER, unfolded pro-
teinsaccumulatethere,resultinginERstress.TomaintaintheER
homeostasis,cellshavedevelopedasignalingpathwayknownas
theunfoldedproteinresponse(UPR)thattransmitssignalsacross
the ER membrane to the cytosol and the nucleus and ultimately
Fig.6. DifferentialexpressionoftheHSP70familyinPK-PDCoV-Ncells.Celllysates reduces protein translation and enhances the ER folding capac-
wer ep reparedfrom PDCoVNg en e-e xpress ingPKc el lsatindicated time poi ntsand itybyu p-regula tingchaper onep roteins(R ona nd Walter, 2007).
immunoblottedtodeterminetheexpressionprofileofeachproteinwithantibodies
CoronavirusinfectionofculturedcellsisknowntocauseERstress
specificforGRP78andHSC70(toptosecondpanels).Theblotwasalsoreactedwith
anti-His tag (third pane l)and anti- (cid:3)- actin(b ottompa nel )ant ibod iesto confirm the andtoinducetheUPR,whichthencrosstalkswithvariouscellu-
statusof Ne xpress ionan deq ualproteinlo ading,re spectiv ely.Eachc ell ularprot ein lars ign alingpa thw ays,i ncludin gmi togen-activ ated proteink inase
expressionwasquantitativelyanalyzedbydensitometryintermsoftherelative cascades, autophagy, apoptosis, and innate immune responses,
density val ue to the (cid:3)-actin ge ne and PK -PD CoV-N sample re sults w er e co mpared indicating theinvolve mentofUP Rac tivation invirus– hostinter-
toPK-controlresults.Valuesarerepresentativeofthemeanfromthreeindependent
ex periments a nd erro r bars d en ote standard de vi atio ns. *P = 0.00 1–0.0 5;†P < 0.001. 2ac0t1io4n).sM aonrde ivnirtaelr epsatitnhgolgye,ngelosbisa l(Fpurontge oemt aicl.a, n2d01m4i;c rFouanrgra aynadn aLliyu-,
seshaveshownthattheexpressionofchaperonproteins,suchas
responsestoviralinfectionorviralproteinexpressionandtogain GRP78andGRP94,isup-regulatedincellsinfectedwithahuman
specific insights into the cellular mechanisms involved in viral coronavirusorincellsexpressingtheS2subunit(Jiangetal.,2005;
pathogenesis (Alfonso et al., 2004; Brasier et al., 2004; Neuman Yeungetal.,2008).Furthermore,theNproteinofPEDV,another
etal.,2008;OhandLee,2012;Ringroseetal.,2008;Sagongand porcinecoronavirus,overexpressionwasshowntotriggerERstress
Lee, 2010; Zhang et al., 2008). In the present work, a proteomic (Xuetal.,2013).Thus,itappearsthatPDCoVinfectionmayinduce
approachwasappliedforprofilingtheglobalproteinexpression ER stress and the UPR, leading to the up-regulation of GRP78 to
changesinhostcellsinresponsetotheNproteinofPDCoV,which counteract the ER stress; hence, the N protein may be responsi-
isamajorconstituentofthevirionandinfectedcells.Therefore,we bleforthisstressresponsepathway.ThesecondidentifiedHSP70
initiallyestablishedaporcinecelllinestablyexpressingthePDCoV family protein is HSC70, also known as heat shock 70-kDa pro-
NproteinandthencharacterizedtheNproteinproducedinthose tein 8 (HSPA8). HSC70 is a molecular chaperone with multiple
cells. Due to the absence of cysteine residues, a disulfide-linked functionsinproteinfoldingandtraffickinginalleukaryoticcells
homodimericNproteinofPDCoVwasnotdetectedinPK-PDCoV-N and in protecting cells from apoptosis or a wide array of stress-
cells.Rather,thePDCoVNproteinwasshowntobeself-assembled orssuchasheatandinfection(Morano,2007;Powersetal.,2008;
vianon-covalentoligomerizationasastructuralcomponentforfor- Takayama et al., 1999). Accumulating evidence has shown that
mation of the viral capsid. Interestingly, the N protein of PDCoV HSC70playsimportantrolesincertainprocessesinvolvedinviral
144 S.Lee,C.Lee/VirusResearch208(2015)136–145
infectionbymodulatingcellentry,viriondisassemblyandassem- In conclusion, to our knowledge, this is the first report of a
bly,andthecellularantiviralresponseandapoptosis(Chuangetal., proteomicanalysisofcellularresponsestothePDCoVNprotein.
2015;Gutiérrezetal.,2010;Ivanovicetal.,2007;Liuetal.,2013; Althoughdefinitefunctionsoftheproteinsthatweidentifiedhere
Radhakrishnanetal.,2010;Yanetal.,2010).Apoptosisisconsid- werenotdetermined,itislikelythatalterationsintheirexpression
eredaninnatedefensemechanismthatlimitspropagationofavirus areinvolvedinvirus–hostinteractions.Toresolvethesequestions
byeliminatinginfectedcells(EverettandMcFadden,1999).There- aswellasperformingvariousPDCoVresearch,obtainingaKorean
fore,manyviruseshaveevolvedtoemployvariousstrategiesthat PDCoVisolatethatcangrowincellcultureisnecessary;wearecur-
inhibitapoptosisinordertopreventprematurecelldeath,thereby rentlyworkingonthistask.Infuturestudies,weareplanningto
securingsufficienttimeforprogenyproduction.Thus,aconceivable assesscellularresponsestoPDCoVbyproteomicanalysistovali-
explanationisthatPDCoVmaytaketheadvantageofsuppressing dateourpresentdata;theproteinsthataredifferentiallyexpressed
apoptosisbyup-regulatingHSC70intheearlyphaseoftheinfec- inthecellsoverexpressingPDCoVNorinthecellsinfectedwith
tion,andtheNproteinseemstobeinvolvedinthismechanism. PDCoVcanbeanalyzedindetailinordertoidentifytheirprecise
In addition, HSC70 mediates the nuclear export of the influenza functioninthereplicationofPDCoV.Ontheotherhand,onelimita-
virusribonucleoproteincomplexviainteractionwithviralproteins tionoftheproteomicmethodologyusedinthisstudyistheinability
M1andNS2(Watanabeetal.,2006,2014).Inthepresentstudy, to reliably detect low-molecular-weight or low-abundance pro-
we found that PDCoV N can be localized to the nucleolus in N- teins such as cytokines, which are involved in the host immune
expressingcells.Ontheotherhand,Nproteinsmustbetrafficked response.Therefore,morecomprehensiveworksarealsoneededto
fromthenucleolustothecytoplasmtoaccomplishnucleocapsid expandourpresentfindingsandtoexploreotherproteinsthatmay
assemblyaswellasviralRNAsynthesisandvirus–hostinteractions. playaroleinhostresponsestothisprotein.Nevertheless,thedata
Accordingtoourresultsandexistingdata,HSC70mayfacilitatethe presentedhereareexpectedtoadvancetheknowledgeaboutthe
export of PDCoV N from the nucleolus to complete the viral life molecular mechanisms associated with PDCoV–host interactions
cycle. andviralpathogenesis.
Like many other viruses, coronaviruses turn off host protein
translation, while continuing to the synthesis of their own gene
Acknowledgment
productstofinishviralreplication.Oneofthemechanismsbehind
thistranslationalsuppressionisthroughinteractionoftheNpro-
tein with elongat ion factor 1(cid:4) ( EF1(cid:4)), a major tran sla tion fa ctor This research was supported by Basic Science Research Pro-
gram through the National Research Foundation of Korea (NRF)
inmammaliancells(Zhouetal.,2008).Inthepresentstudy,the
funded by the Ministry of Science, ICT & Future Planning
amount of another translational factor, EF2, was affected by the
(2013R1A2A2A01004355).
hostresponsetothePDCoVNprotein.Althoughwedonotknow
whethertheincreasedexpressionofEF2isrelatedtoitsbindingto
PDCoVN,suchdifferentialexpressionofatranslationfactormaybe References
associatedwithregulationofbothhostandviralproteinsynthesis.
Wealsofoundthatexpressionofthecytoskeletalproteinezrinis Alfonso,P.,Rivera,J.,Hernáez,B.,Alonso,C.,Escribano,J.M.,2004.Identificationof
sign ifica ntlyen hanc edbytheN p rote in.Ezrinisa membe rofth e cellu lar protein s modified inr esponse to Africansw inef everv irusinfection by
proteom ics.Prot eomics4, 20 37–2046.
tehzaritno–rmgaoneiszien–trhaedcixoirnt ic(EaMlcRy)t ofaskmeilleyt oonf hboysmt ceydtioastiknegleitnatle prarocttieoinnss Bradgfroarmd, qMu.aMn.t, i 1ti9e7s6o.f Ap rroatpe iidn auntdil iszeinngsittihvee pmrientchiopdle foofr pthroet eqiuna–ndtyiteatbiionnd oinf gm.Aicnraol-.
betw een actin an d the pl asma membr ane proteins a nd function Bioch em.72,248 –2 54.
Brasier,A.R.,S pra tt,H.,Wu,Z.,Boldogh,I.,Zhang,Y.,Garofalo,R.P.,Casola,A.,Pashmi,
as signal transducers in numerous signaling pathways (Neisch and J.,H aag, A.,Luxo n, B.,K uro sky,A.,2 00 4.Nuc lea rheatsho ckre sponse an dnovel
Fehon,2011).TheEMRalsomodulateRNAvirusinfectionbyreg- nu clear dom ain10 re organiza tion inre spirator ysyn cytial virus-infe cted a549
ulating stable and dyna mic microtubu lefor matio n(Bukon ge tal., cellside ntifiedb yh igh-resolutiont wo -dimension algelelec trophoresis.J. Virol.
2013; H aedick e et al., 2008 ; Naghavi et al., 2007). Given th e b io- Buko7n8g, 1, T1.4N6.,1K–o1d1y4s 7,K6.. ,Szabo,G.,2013. Humanezrin–mo esin –radixinprotein s mod-
logicalfeaturesoftheEMRproteins,theup-regulationofezrinin ulate hep atitisC vi rusinfe cti on.He patolog y58,1569–1579.
ourstu dysugge sts tha tthe PDCoVN pro teinmayman ipu latet he Chen,H., Wurm,T. ,B ritton ,P.,Brook s,G.,Hiscox ,J.A .,2002.Interactionofthecoro-
hos t cytos keletal n etwo rk a nd cell sig naling, poss ibly to facili tate 5n2a v3i3r –u5s 2n5u0c.l eop rotein wit h nucle ola r antige ns a nd th e host cell. J. Viro l. 76,
theprocessesofviralinfectionandreplication.
Chuang,C.K.,Yang,T.H.,Chen,T.H.,Yang,C.F.,Chen,W.J.,2015.Heatshockcognate
I ncontrast ,th eexp ressiono ftran slocon-associatedproteinsub- prot ein7 0isofo rmD isreq uired forcla thri n-dep enden tend ocyto sisofJ apanese
unit d elta (TR APD ) is suppre ss ed in cells expressing the PD CoV encepha lit isvirusi n C6 /36cells .J.G en.Virol.96,793–8 03.
de Groot, R.J., B aker, S.C ., Bar ic, R., E njua nes, L ., G orbalenya, A.E., Holmes, K.V.,
cNo mprpolteexint,h aactcoisrdininvgo ltvoe douinr rterasunlstlso. cTaRtiAnPgDp riso tae ipnasrat corfo sthset hTeRAERP PCeorrlomn aanvi, rSi d.,a Peo.Ionn: , KLi.n, gR ,oAtt.Mier.Q, .P,.AJ .dMa.m, Tsa,lMbo.Jt. ,, CPa. Jr.,s tWenoso,,E P.B.C.,.LY e.,f kZoiew biutzh,rE, .JJ.., (2 E0d1s.1).,
membran e an d in regula tin g the retentio n of ER reside nt p ro- VirusTaxonom y:N inth Report oftheIn terna tionalCo mmi tteeonTax ono myof
Virus es.Elsevier, Oxford ,pp.80 6– 828 .
vteiainbsu (dFodninsg eot fatl.h, e20n0u3c)l.e Cocoaropnsiadvitrhursoeusg ahctqhueirEeR t–hGeiorl gliipiindt eernmveeldoip- Everientfte, cHti.o, n M.TcrFeandddse nM, iGcr.,o b1i9 o9l.97. ,A1p6o0p–t1o6si5s.: an innate immune response to virus
ate compart me nt ( McBride et a l., 2014). The down-re gulation of Fernandez, J. , Ghara hdaghi, F ., Mische, S.M., 1998. Routine identification of
protein sfr omsodiumdod ecy lsulfate- polyac rylamid egelelec trophoresis(SD S-
TRAPD may lead to the release of cellular proteins from the ER dur- PAGE) g els o r polyvi nyl diflu oride membranes usin g matrix assisted laser
ing PDCoV replication, which in turn, promotes translocation of desorp tion/ ion ization-tim eofflight- massspectrom etry( MALDI- TOF-MS) .Elec-
env elope-a ssociatedvir alstruc tu ralpr oteinstoth eERmembra ne trophoresis19,1036–1045.
– the site of budding – to f acilitate vi rus assem b ly. E uka ryotic cells Fonst,r aRn.sDlo.,c oBno-g aesrsto, cBia.tAe.d, pHreogtdeien, cRo.mS.p, l2ex00d3u.r iSnugbtrsatrnastleo-csapteiocnifiacc rfousnsctthioenE Romf etmhe-
reprogram their metabolism to adapt to stress-induced damage brane.J.CellBiol.160, 529–53 9.
inresponse toen vironmenta lst ressor s.A mongourdiffe rentially Fung,T.S., H uang ,M., Liu, D.X.,2014.Coronavirus-inducedERstressresponseand
ex pressed p rot eins, some are e ither dire ctly or in dire ctly involved i1t1s 0in–1v o2l3v.emen t in reg ulatio n of c oronavirus–host inter act ions. V irus Res. 194,
inmetabolism.Onehypothesisthatcanexplainthisresultisthat
Fung,T.S.,Liu,D.X.,2014.Coronavirusinfection,ERstress,apoptosisandinnate
pr oductionoft heN proteinaff ects cellu larbios ynth esisby m od- im mun ity. Front .Micro biol.5,1–13 .
ulating the ex pre ssi on of m etaboli sm-relat ed proteins, wh ich in Gutiérrez,M., Isa,P., Sánchez-S an ,Martin,C.,Pérez-Vargas,J.,Espinosa,R.,Arias,
C.F.,Ló pez ,S., 201 0.Differentr otavirus str ainsenterMA 10 4cellsthr oug hdif-
trueprnli craetmioond.els the intracellular environment for optimal PDCoV 8fe4r,e9n 1t 6e1n–d9o 1c6y9 ti.c pat hways: th e role of clathrin -medi ated en docyt osis. J. V irol.
S.Lee,C.Lee/VirusResearch208(2015)136–145 145
Gygi,S.P.,Rochon,Y.,Franza,B.R.,Aebersold,R.,1999.Correlationbetweenprotein Powers,M.V.,Clarke,P.A.,Workman,P.,2008.DualtargetingofHSC70andHSP72
an dm RNAabu nd ancein yeas t.Mol.Cell. Bio l.19, 1720–1730. inhi bitsH SP90fu nctio nandindu ces tumo r-spe cificapop tos is.Can cerC ell14,
Haedick e, J., de Los S an tos, K., G off, S.P ., N aghavi, M.H., 2008. The 250–262 .
ezrin– radi xin– moes in family me mber ezrin regulates stable microt ubule Radhakrishnan,A.,Yeo,D.,Brown,G.,Myaing,M.Z.,Iyer,L.R.,Fleck,R.,Tan,B.H.,
formationandretrovir alinfect ion.J.Viro l.82,4 665–4670 . Aitken,J.,Sa nm un,D .,T ang,K., Yar wood,A., Brink ,J.,S ugru e,R.J.,2 01 0.Pr otein
Hiscox,J.A.,W urm ,T.,Wilso n,L.,Brit to n,P., Cav anagh,D.,Brooks,G.,2001.The analysis o fpurified re spirat ory syncytial vi ruspa rti clesreve als anim portant
coro nav irusinfe ctio usbron chi tisvirus nuc leoprotein loc alizesto the nucleo lus. roleforh ea tshockp rotein90in viruspart icleas sembly.M ol.Cell Pro teomics9,
J.Virol.75,5 06–512. 1829 –1 848.
Ivano vic, T ., A gosto, M.A., Chandran, K., Nibert, M.L., 2007. A role for molecu- Ringrose,J.H.,Jeeninga,R.E.,Berkhout,B.,Speijer,D.,2008.Proteomicstudiesreveal
larch ape roneHs c70in reoviruso ute rcapsid disas sembly .J .Bio l.Ch em.282, coord inate dchange sin T-cellexp res sionpat ter nsupo ninfection withh uman
122 10–12219. immunodefi ciencyvi rus type 1.J.Virol.82 ,4320–4 330.
Jiang,X.S.,Tang,L.Y.,Dai,J.,Zhou,H.,Li,S.J.,Xia,Q.C.,Wu,J.R.,Zeng,R.,2005. Ron,D.,Walter,P.,200 7.Sign alin te gr ation int heendoplasmicreticulumunfolded
Q uanti tative analy siso fs evere acut er espi rator ysyn drom e(S ARS)-a sso ciated p rot einresp on se.Na t.Rev. Mol.CellBio l.8 ,51 9–529.
coronavirus- infectedc el lsusing proteo micapproa ches:impli cationsforcellular Sagong,M., Lee,C.,2 010. Diff erent ialc ellul ar expressionincontinuousporcine
responsestovirusinf ectio n.Mo l.CellProte omics4,902 –913. alve olar mac rop hages regulatedby thepo rcinereprod uc tiveandres piratory
Jung,K.,Hu,H ., Eyerl y,B.,Lu,Z .,Ch epn geno,J.,Sai f, L.J.,2015.Pathogenicityof syndrom evirusnucleo capsidpro tein .Vi rusRes. 151,88–96.
2 po rcine de ltacoron av irus str ainsingnot ob iotic pigs .Emer g.Infect.Dis.2 1, Sagong,M.,Le e,C., 2011.Porcin ereprod uctiv ean dres piratorysyndromevirus
65 0–654. nucl eoca psid pr otein modulat es interferon- (cid:3) pr oduction by inhibiting IRF3
Kim,Y.,Lee,C.,2013.Ribavirinefficientlysuppressesporcinenidovirusreplication. activation in immort alized porc ine alveolar m acrophage s. A rch. Virol. 156,
V iru sRe s.1 71,44 –53. 2187–219 5.
Lai,M.C., Perl man, S.,Anderson,L.J.,2007.Coronaviridae.In:Knipe,D.M.,How- Sambrook,J.,Russell,D.W.,2001.MolecularCloning:ALaboratoryManual,thirded.
ley,P .M.,Griffin ,D .E.,Martin ,M.A .,Lam b,R.A.,Roizma n,B .,Strau s,S.E. (Eds.), ColdSp ri ngHarb orLab orator yPress,Co ldSpring H arbor,NY.
Fiel dsVir ology., fifth ed.Lipp incot tWillia ms& Wilkins, Ph iladelph ia,P A,pp. Shevchen ko,A., Wilm,M .,Vorm,O., Mann ,M.,1 996.M assspec trometricsequencing
1305– 1336. ofprotein ss ilver-s tain edpo lya crylam ide gels.A nal.C hem.68,850– 858.
Lee,C.,Hodgins,D.C.,Calvert,J.G.,Welch,S.K.,Jolie,R.,Yoo,D.,2006.Thenuclear Takaya ma, S., Xie, Z., Reed, J.C., 1999. An evol ution arily c onse rved family of
loca lization signa l of the PRR S virus nuc leocap sid pro tein viral rep lication Hsp70/ Hsc 70m ole cularc hape ronere gula tors.J.Biol.Che m.274,781 –786.
invitroand antibod yr espo nsein vivo. Adv.Exp.Med .Biol.58 1,145 –148. Wang,L.,Byrum,B .,Zhang,Y .,2014.Det ectionandg e netic charac teriz ationofdelta-
Lee,S. ,Lee, C.,2 014.Com pletegen om ech arac teriza tion ofKo rean porcinedelta- cor on avirusi np igs,Oh io, USA,2 014.Eme rg.In fect.Di s.20,1227–1230 .
cor onav iru sstrain KOR/KNU 14-04/2 014.GenomeAnn ou nc.2,e0 1191–e 1214. Watanabe,K.,F us e,T., Asano ,I.,T sukah ara,F., Maru, Y.,N ag ata,K.,Kitazato,K.,
Lee,C.,Yoo,D.,2 006.T hesmallenvelopeprot einofpo rcinerepro d uctiveandrespi- Kobaya shi ,N.,20 06 .Identifi ca tionofHsc7 0a sanin flue nzaviru sm atrixprot ein
rat orys ynd rome viru spos sessesion channe lp rotein-l ikeproperties .Vir ology (M1)bindin gf actor involvedinth ev iruslif ec ycl e.FEBSLe tt.58 0,5785 –5790.
355,30 –43. Watanab e,K.,Sh imizu, T.,Noda ,S .,Ts ukaha ra, F.,Ma ru,Y .,Kob ayas hi,N.,2014.
Lee,Y.J., Park,C.K.,Nam,E.,Kim,S.H.,Lee,O.S.,Lee,D.S.,Lee,C.,2010.Generationof Nuclea rex portofth ein fluenz av irusribonuc leo protein co mplex:inte ract ionof
apo rcine alveo larm acr opha gece lllin efor the grow tho fp orcine reproducti ve Hsc70w ithvira lp rot einsM1an dNS 2.FEBSOpenBio4 ,683–688 .
an drespir atorysy ndromevirus .J.V irol. Me tho ds163, 410 –415. Woo,P.C., Lau,S .K.,L am,C.S., Lau, C.C. ,Tsan g,A.K .,Lau ,J.H .,B ai,R.,Teng,J.L.,Tsang,
Li,G.,Ch en,Q.,Harm on,K.M.,Y oon, K. J.,Sch wartz,K.J .,Hoo gland,M.J.,Gauger,P.C., C. C.,W ang ,M.,Z heng ,B.J. ,Cha n,K.H .,Yuen ,K.Y .,20 12.D isco ver yofse ven novel
M ain,R. G., Zhang,J., 2014 .Full-l engt hgenome sequ enceofpo rcine deltaco ron- mam malian an davian coro navir usesi ntheg enu sdelta coronaviru ss uppor tsbat
avirus strai nUSA/ IA /2014/ 8734.Geno meAnno unc.2,e0 02 78–e314 . coronaviruse sas theg enesourceofa lp hac oronav irusandbetacoro navirusa nd
Livak,K.J., Schm ittgen,T.D.,2001.A nalysiso frelativeg en eexpressiondatausing aviancoronav iru ses asthe genes ou rceofgammacoro nav irusanddeltacor on-
re al-tim equantitat iveP CRand the2(− De ltaDelta C(T)) method.M etho ds25, avirus .J.Virol.86,39 95 –40 08.
402–408. Wootton,S .K .,Yoo ,D .,2003.Homo-oligomerizationoftheporcinereproductive
Liu,Z.,Wu,S.W.,Lei,C.Q.,Zhou,Q.,Li,S.,Shu,H.B.,Wang,Y.Y.,2013.Heatshock andre spira tory syn drome virusnucleocapsidpro tei nan dthero leofdisulfide
cog nate 71(H SC7 1)reg ulates cel lula ra ntivi ralres ponse byim pairin gform ation link ages.J.Virol .77,4546– 4557.
ofVISAa gg regates. ProteinCe ll4,373 –382. Wurm,T.,Che n ,H.,H odg son,T.,Britton,P.,Brooks,G.,Hiscox,J.A.,2001.Localization
Marth aler,D .,Jiang,Y., Collins, J.,Ro ss ow,K.,2014a.Completegenomesequenceof tot he nucle olu sisacom m onfeatu re ofcoro na virusnu cleo prote ins,andthe
strainS DC V/USA /Il linois12 1/ 2014,ap orc inedel tacoronav irusfrom theUnit ed pr otein maydisr up th ostcelld ivision. J.V irol.75,9345 –9356.
States .GenomeAnnounc.2,e0021 8– e314. Xu, X., Zha ng, H ., Zhan g, Q ., Hu ang, Y., D ong, J., L iang, Y., Liu, H.-J., Tong, D.,
Marthaler, D.,Raym ond,L.,Jia ng ,Y.,Collins,J.,Rossow,K.,Rovira,A.,2014b.Rapid 201 3.Porci nee pidemi cdia rrheaN pro teinpr olo ngsS-p ha sece llcycl e,indu ces
detecti on, complete gen ome seq uencing ,a ndphylo gen etican aly sisofp orcine endop lasmicr eticulum stress,an d up-regu latesinte rleukin- 8ex pressi on.Vet.
deltacoron avirus.Em erg.Infe ct.Dis.20,1 347– 1350. Microbiol.16 4,212–221 .
McBride,R.,vanZyl,M .,Field ing,B.C .,20 14. Thecoronavirusnucleocapsidisamul- Yan,F.,Xia,D. ,Hu, J.,Yuan,H.,Zou,T.,Zhou,Q.,Liang,L.,Qi,Y.,Xu,H.,2010.Heat
tifunc tio nal prot ein. Viruses6 ,29 91–30 18. s ho ckco gn atep ro tein7 0g enei sre quired fo rprev ent ion of apo pto sisind uced
Morano,K.A.,20 07.New tricksfo r anolddog:theevolvingworldofHsp70.Ann.N. byWS SVinfec tion.Arc h.V irol. 15 5,1077– 108 3.
Y.Ac ad.S ci.111 3,1– 14. Yeung, B.H.,K wan,B.W. ,He,Q .Y.,Le e,A.S .,Liu,J.,Wong,A.S.,2008.Glucose-regulated
Nagha vi,M.H .,V alente ,S.,Hatziioannou,T.,deLosSantos,K.,Wen,Y.,Mott,C.,Gun- pro tein 78asa nove leff ecto rofB RCA 1fo r inhibiti ngs tress-i nducedapoptosis.
derse n,G.G .,Goff,S. P., 2007.Moesinr eg ula tess tablem icr otubu le forma tio nand Oncoge ne 27, 6 782–6 789.
limitsre trov iralin fect ionin culture dcells.EM BO26 ,41–52. Yoo,D.,Woott on, S.K.,Li,G.,Song,C.,Rowland,R.R.,2003.Colocalizationandinter-
Nam,E.,Le e,C.,2010 .Contribu tio nofthep orcin eamin ope ptidaseN(CD13)receptor a cti onofthep orci ne art eriviru sn ucleocap sidp rotein withthesmall nuc leolar
de ns ityt op orcine epidemicdia rr hea virusin fection.Vet.Micr ob iol.144 ,41–50. RNA-a sso ciat edprote infibrillari n.J.Virol.77, 12173–1 2183 .
Neisch, A.L ., Fehon, R.G., 201 1. Ezrin , rad ixin and mo esin: key reg ulators Zhang,J.,Li,D.,Zhen g,Y.,Cu i,Y.,Feng, K .,Zhou ,J., Wu,J.,2008.Proteomicprofiling
of m emb rane–co rtex i nteract ions an d signa ling. Curr. Opi n. Ce ll Biol. 23, ofh ep at itis Bvirus -re lated he patoc ell ularca rc inom a inChi na:aSELDI -TOF-MS
37 7–382. stu dy.Int.J. C lin.Exp.Patho l.1,352–361.
Neuman,B.W.,Joseph,J.S.,Saikatendu,K.S.,Serrano,P.,Chatterjee,A.,Johnson,M.A., Zhang,H., Guo , X.,G e,X., Chen,Y ., Sun,Q.,Yang,H.,2009.Changesinthecellular
Liao,L .,Klau s,J.P.,Y ates III,J.R.,Wüt hrich ,K.,Stev en s,R.C.,Buch me ier,M.J.,K uhn, pro tein sof pu lmo nar yalve ola rmac rop hage infe ctedw ithporc in ere produc-
P.,20 08 .Prote om icsan aly sisu nravelsth ef unctiona lrep ertoireofc oron avirus tiveand res piratorysyn dromev irusbyproteo micsana lysis. J.Proteo meRes.8,
no nstruc turalprotein 3.J.Vir ol.82,52 79–5 294. 3091 –30 97.
Oakley,B.R.,Kirsc h,D.R.,M o rr is,N.R .,1 980.Asimplifiedultrasensitivesilverstain Zhou,B.,Liu,J.,Wang,Q.,Liu,X.,Li,X.,Li,P.,Ma,Q.,Cao,C.,2008.Thenucleocapsid
ford etec tingpro teins inpoly acryl amide ge ls.Anal.Bi ochem.105,3 61–36 3. pr ote ino fs everea cu tere sp irat ory sy nd rom ec oron avi rusin hibit scellcytoki-
Oh,J.,L ee,C.,2012 .Proteom ic characterizatio nofa nove lstructura lpro teinORF5aof nesisan dp rolifer ationb yinteractin gwithtran slationelong ationfa ctor 1alpha.
po rcin er eprod uctiveand respiratorysynd ro m eviru s.VirusRe s.169,2 55–26 3. J.Viro l.82 ,6962–6971 .