Table Of ContentMAHS-DV Geometry Q4
Flexbook
Adrienne Wooten
Lori Jordan, (LoriJ)
SayThankstotheAuthors
Clickhttp://www.ck12.org/saythanks
(Nosigninrequired)
www.ck12.org
AUTHORS
AdrienneWooten
To access a customizable version of this book, as well as other
LoriJordan,(LoriJ)
interactivecontent,visitwww.ck12.org
CK-12 Foundation is a non-profit organization with a mission to
reduce the cost of textbook materials for the K-12 market both
in the U.S. and worldwide. Using an open-content, web-based
collaborative model termed the FlexBook®, CK-12 intends to
pioneerthegenerationanddistributionofhigh-qualityeducational
content that will serve both as core text as well as provide an
adaptiveenvironmentforlearning,poweredthroughtheFlexBook
Platform®.
Copyright©2014CK-12Foundation,www.ck12.org
The names “CK-12” and “CK12” and associated logos and the
terms “FlexBook®” and “FlexBook Platform®” (collectively
“CK-12 Marks”) are trademarks and service marks of CK-12
Foundation and are protected by federal, state, and international
laws.
Any form of reproduction of this book in any format or medium,
in whole or in sections must include the referral attribution link
http://www.ck12.org/saythanks (placed in a visible location) in
additiontothefollowingterms.
Except as otherwise noted, all CK-12 Content (including CK-12
Curriculum Material) is made available to Users in accordance
with the Creative Commons Attribution-Non-Commercial 3.0
Unported (CC BY-NC 3.0) License (http://creativecommons.org/
licenses/by-nc/3.0/), as amended and updated by Creative Com-
monsfromtimetotime(the“CCLicense”),whichisincorporated
hereinbythisreference.
Completetermscanbefoundathttp://www.ck12.org/terms.
Printed: March11,2014
iii
Contents www.ck12.org
Contents
1 PerimeterandArea 1
1.1 TrianglesandParallelograms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Trapezoids,Rhombi,andKites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.3 AreasofSimilarPolygons. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.4 AreaandPerimeterofRegularPolygons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.5 PopulationDensity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2 SurfaceAreaandVolume 38
2.1 ExploringSolids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.2 SurfaceAreaofPrismsandCylinders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.3 SurfaceAreaofPyramidsandCones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
2.4 VolumeofPrismsandCylinders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
2.5 VolumeofPyramidsandCones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
2.6 SurfaceAreaandVolumeofSpheres . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
2.7 ExploringSimilarSolids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
2.8 Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
2.9 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
iv
www.ck12.org Chapter1. PerimeterandArea
C 1
HAPTER
Perimeter and Area
Chapter Outline
1.1 TRIANGLES AND PARALLELOGRAMS
1.2 TRAPEZOIDS, RHOMBI, AND KITES
1.3 AREAS OF SIMILAR POLYGONS
1.4 AREA AND PERIMETER OF REGULAR POLYGONS
1.5 POPULATION DENSITY
Now that we have explored triangles, quadrilaterals, polygons, and circles, we are going to learn how to find the
perimeterandareaofeach. Firstwewillderiveeachformulaandthenapplythemtodifferenttypesofpolygonsand
circles. Inaddition,wewillexplorethepropertiesofsimilarpolygons,theirperimetersandtheirareas.
1
1.1. TrianglesandParallelograms www.ck12.org
1.1 Triangles and Parallelograms
Learning Objectives
• Understandthebasicconceptsofarea.
• Useformulastofindtheareaoftrianglesandparallelograms.
Review Queue
1. Defineperimeterandarea,inyourownwords.
2. Solvetheequationsbelow. Simplifyanyradicals.
a. x2=121
b. 4x2=80
c. x2−6x+8=0
3. Ifarectanglehassides4and7,whatistheperimeter?
KnowWhat? Ed’sparentsaregettinghimanewbed. Hehasdecidedthathewouldlikeakingbed. Uponfurther
research, Ed discovered there are two types of king beds, an Eastern (or standard) King and a California King.
The Eastern King has 76(cid:48)(cid:48)×80(cid:48)(cid:48) dimensions, while the California King is 72(cid:48)(cid:48)×84(cid:48)(cid:48) (both dimensions are width ×
length). Which bed has a larger area to lie on? Which one has a larger perimeter? If Ed is 6’4”, which bed makes
moresenseforhimtobuy?
Areas and Perimeters of Squares and Rectangles
Perimeter: Thedistancearoundashape. Or,thesumofalltheedgesofatwo-dimensionalfigure.
The perimeter of any figure must have a unit of measurement attached to it. If no specific units are given (feet,
inches,centimeters,etc),write“units.”
2
www.ck12.org Chapter1. PerimeterandArea
Example1: Findtheperimeterofthefiguretotheleft.
Solution: First, notice there are no units, but the figure is on a grid. Here, we can use the grid as our units.
Countaroundthefiguretofindtheperimeter. Wewillstartatthebottomleft-handcornerandgoaroundthefigure
clockwise.
5+1+1+1+5+1+3+1+1+1+1+2+4+7
Theansweris34units.
Youareprobablyfamiliarwiththeareaofsquaresandrectanglesfromapreviousmathclass. Recallthatyoumust
alwaysestablishaunitofmeasureforarea. Areaisalwaysmeasuredinsquareunits,squarefeet(ft.2),squareinches
(in.2). squarecentimeters(cm.2),etc. Makesurethatthelengthandwidthareinthesameunitsbeforeapplyingany
areaformula. Ifnospecificunitsaregiven,write“units2.”
Example2: FindtheareaofthefigurefromExample1.
Solution: Ifthefigureisnotastandardshape,youcancountthenumberofsquareswithinthefigure. Ifwestarton
theleftandcounteachcolumn,wewouldhave:
5+6+1+4+3+4+4=27units2
AreaofaRectangle: Theareaofarectangleistheproductofitsbase(width)andheight(length)A=bh.
Example3: Findtheareaandperimeterofarectanglewithsides4cmby9cm.
Solution: Theperimeteris4+9+4+9=36cm. TheareaisA=9·4=36cm2.
Inthisexampleweseethataformulacanbegeneratedfortheperimeterofarectangle.
PerimeterofaRectangle: P=2b+2h,wherebisthebase(orwidth)andhistheheight(orlength).
Ifarectangleisasquare,withsidesoflengths,theformulasareasfollows:
3
1.1. TrianglesandParallelograms www.ck12.org
PerimeterofaSquare: P =2s+2s=4s
square
AreaofaSquare: A =s·s=s2
sqaure
Example4: Theareaofasquareis75in2. Findtheperimeter.
Solution: Tofindtheperimeter,weneedtofindthelengthofthesides.
A=s2=75in2
√ √
s= 75=5 3in
(cid:16) √ (cid:17) √
Fromthis, P=4 5 3 =20 3in.
Area Postulates
CongruentAreasPostulate: Iftwofiguresarecongruent,theyhavethesamearea.
Thispostulateneedsnoproofbecausecongruentfigureshavethesameamountofspaceinsidethem. However,two
figureswiththesameareaarenotnecessarilycongruent.
Example5: Drawtwodifferentrectangleswithanareaof36cm2.
Solution: Thinkofallthedifferentfactorsof36. Thesecanallbedimensionsofthedifferentrectangles.
Otherpossibilitiescouldbe6×6,2×18,and1×36.
AreaAdditionPostulate: Ifafigureiscomposedoftwoormorepartsthatdonotoverlapeachother,thenthearea
ofthefigureisthesumoftheareasoftheparts.
Example6: Findtheareaofthefigurebelow. Youmayassumeallsidesareperpendicular.
Solution: Splittheshapeintotworectanglesandfindtheareaofeach.
4
www.ck12.org Chapter1. PerimeterandArea
A =6·2=12 ft2
toprectangle
A =3·3=9 ft2
bottomsquare
Thetotalareais12+9=21 ft2.
Area of a Parallelogram
Recallthataparallelogramisaquadrilateralwhoseoppositesidesareparallel.
Tofindtheareaofaparallelogram,makeitintoarectangle.
Fromthis,weseethattheareaofaparallelogramisthesameastheareaofarectangle.
AreaofaParallelogram: TheareaofaparallelogramisA=bh.
Becareful! Theheightofaparallelogramisalwaysperpendiculartothebase. Thismeansthatthesidesarenotthe
height.
5
1.1. TrianglesandParallelograms www.ck12.org
Example7: Findtheareaoftheparallelogram.
Solution: A=15·8=120in2
Example8: Iftheareaofaparallelogramis56units2 andthebaseis4units,whatistheheight?
Solution: Pluginwhatweknowtotheareaformulaandsolvefortheheight.
56=4h
14=h
Area of a Triangle
Ifwetakeparallelogramandcutitinhalf,alongadiagonal,wewouldhavetwocongruenttriangles. Therefore,the
formulafortheareaofatriangleisthesameastheformulaforareaofaparallelogram,butcutinhalf.
AreaofaTriangle: A= 1bhorA= bh.
2 2
Inthecasethatthetriangleisarighttriangle,thentheheightandbasewouldbethelegsoftherighttriangle. Ifthe
triangleisanobtusetriangle,thealtitude,orheight,couldbeoutsideofthetriangle.
Example9: Findtheareaandperimeterofthetriangle.
Solution: Thisisanobtusetriangle. First, tofindthearea, weneedtofindtheheightofthetriangle. Wearegiven
the two sides of the small right triangle, where the hypotenuse is also the short side of the obtuse triangle. From
thesevalues,weseethattheheightis4becausethisisa3-4-5righttriangle. TheareaisA= 1(4)(7)=14units2.
2
6
Description:collaborative model termed the FlexBook®, CK-12 intends to pioneer Regular Polyhedron: A polyhedron where all the faces are congruent regular