Table Of ContentTitle Development and improvement of ALMA Band 10 receiver
Author(s) 藤井, 泰範
Editor(s)
Citation
Issue Date 2017-02
URL http://hdl.handle.net/10466/15391
Rights
http://repository.osakafu-u.ac.jp/dspace/
Development and improvement of   
ALMA Band 10 receiver 
 
 
Yasunori Fujii 
 
 
 
 
 
   
Feburary, 2017
 
 
Osaka Prefecture University
この論文を妻 由美に捧げる 
 
あなたがいなければ論文書く気にならなかったです 
 
まったくも~~ 
 
泰範
Table of contents 
1. Introduction ....................................................................................................................... 1 
1.1. Radio astronomy ........................................................................................................... 1 
1.2. ALMA telescope ............................................................................................................ 3 
1.3. Science of the Band 10 receiver ................................................................................... 5 
1.3.1. Spectrum observations .......................................................................................... 5 
1.3.2. High-mode rotational spectra of molecules .......................................................... 6 
1.3.3. Continuum observations ....................................................................................... 7 
1.4. Heterodyne receiver ...................................................................................................... 7 
1.5. Development and refinement of the ALMA Band 10 receiver ................................... 9 
1.5.1. Design ..................................................................................................................... 9 
1.5.2. Test systems and performance ........................................................................... 10 
1.5.3. Balanced mixer–receiver ..................................................................................... 10 
References ........................................................................................................................... 10 
2. ALMA Band10 receiver: Design ...................................................................................... 13 
2.1. Cartridge Overview..................................................................................................... 13 
2.1.1. General Description ............................................................................................. 13 
2.1.2. Optics scheme ...................................................................................................... 17 
2.1.3. LO scheme ............................................................................................................ 17 
2.1.4. Mixing scheme ..................................................................................................... 18 
2.1.5. IF scheme ............................................................................................................. 18 
2.2. Optics ........................................................................................................................... 19 
2.2.1. Overview .............................................................................................................. 19 
2.2.2. Optical design ...................................................................................................... 19 
2.2.3. Quasi-optical Analysis ......................................................................................... 21 
2.3. LO injection ................................................................................................................. 23 
2.3.1. Overview .............................................................................................................. 23 
2.3.2. Application to ALMA Band 10 prototype ........................................................... 25 
2.3.3. Side-band noise and LO injection ....................................................................... 27 
2.4. Mixer Design ............................................................................................................... 30 
2.4.1. Design Overview .................................................................................................. 30 
2.4.2. Design of LO and RF Paths ................................................................................ 31 
2.4.3. Design of Tuning Circuit ..................................................................................... 35 
2.5. Other components ....................................................................................................... 38 
2.5.1. Cryogenic Low Noise Amplifier (CLNA) ............................................................ 39
2.5.2. Cryogenic isolator ................................................................................................ 41 
2.5.3. Warm IF amplifier ............................................................................................... 42 
2.5.4. Wiring ................................................................................................................... 43 
2.6. Mechanical design and analysis ................................................................................ 49 
2.6.1. Cartridge design overview .................................................................................. 49 
2.6.2. 300K Base plate assembly .................................................................................. 50 
2.6.3. 110K stage assembly ........................................................................................... 52 
2.6.4. 15K stage assembly ............................................................................................. 53 
2.6.5. 4K stage assembly ............................................................................................... 54 
2.6.6. Optics assembly ................................................................................................... 55 
2.6.7. Mechanical analysis ............................................................................................ 64 
References ........................................................................................................................... 77 
3. ALMA Band10 receiver: Test Systems/ Performance and Mass production ................. 80 
3.1. Overview of ALMA Band 10 Test System ................................................................. 80 
3.2. Noise Test System ....................................................................................................... 83 
3.2.1 DSB Measurement Configuration ....................................................................... 84 
3.2.2 Narrow-Band Cartridge Output Power and Noise Temperature ...................... 85 
3.2.3. Total Power Receiver Noise and Output Power Determination ....................... 87 
3.2.4. In-Band and 0-18GHz Output Power ................................................................. 87 
3.2.5. Spurious Response ............................................................................................... 89 
3.2.6. Typical test results .............................................................................................. 89 
3.3. Sideband Ratio(S.B.R.) Measurement Configuration............................................... 94 
3.3.1. Requirememt ....................................................................................................... 94 
3.3.2. Test method ......................................................................................................... 95 
3.3.3. Typical test results .............................................................................................. 97 
3.4. Amplitude stability ................................................................................................... 101 
3.4.1. Requirement ...................................................................................................... 101 
3.4.2. Typical test results ............................................................................................ 102 
3.5. Gain Compression Measurement Configuration .................................................... 106 
3.6. Beam Test System .................................................................................................... 109 
3.7. Mass Production ........................................................................................................ 114 
3.7.1. Description of the production process .............................................................. 114 
3.7.2. Challenges during production........................................................................... 118 
3.7.3. Noise performance ............................................................................................. 119 
3.7.4. First light of the ALMA Band 10 receivers ...................................................... 120 
References ......................................................................................................................... 121
4. Low-Noise Integrated Balanced SIS Mixer for 787–950 GHz ...................................... 123 
4.1. Overview and motivation of the integrated balanced mixer .................................. 123 
4.2. Design ........................................................................................................................ 126 
4.2.1 Integrated balanced mixer configuration .......................................................... 126 
4.2.2. RF hybrid design ............................................................................................... 128 
4.2.3. IF power combiner design ................................................................................. 132 
4.3. Assembly and measurement setup .......................................................................... 134 
4.3.1. SIS mixer chip selection .................................................................................... 134 
4.3.2. Receiver setup .................................................................................................... 137 
4.3.3. LO sources .......................................................................................................... 138 
4.3.4. Measurement setup ........................................................................................... 141 
4.4. Measurement results ................................................................................................ 142 
4.4.1. Evaluation of the 90hybrid coupler ................................................................ 142 
4.4.2. Noise temperature of the balanced mixer ........................................................ 144 
4.4.3. Estimation of Noise Rejection and LO noise ................................................... 148 
References ......................................................................................................................... 150 
5. Summary ........................................................................................................................ 154 
Acknowledgment ............................................................................................................... 156
1. Introduction 
1.1. Radio astronomy 
The discipline of modern astronomy started in 1610 when Galileo Galilei 
pointed a small telescope towards the skies. For more than three centuries, 
until the 1930s, most astronomical observations were limited to the visible 
part of the electromagnetic spectrum. In 1931, Karl Jansky, an engineer at 
Bell Telephone Laboratories, pointed a radio antenna towards the sky and 
detected  some  unexpected  extraterrestrial  radiation  at  a  wavelength  of 
14.6 m and a frequency of 20.5 MHz. He determined that its source was not 
the Sun. That observation marked the beginning of radio astronomy [1]. We 
now know that the radiation Jansky observed came from the plasma in the 
interstellar medium (ISM) in the region of the Milky Way called the Galactic 
Center. In the decades since Jansky’s work, observations at radio frequencies, 
powered by huge advances in microwave technology, have multiplied, and 
many discoveries have been made [2]. For example, different molecules, such 
as CH, OH, NH , H CO, HCN, and CO were detected in interstellar clouds in 
3 2
the 1940s [3]. Radio observations also paved the way for the discovery of new 
objects such as pulsars, quasars, and radio galaxies [4]. In 1965, Robert 
Wilson and Arno Penzias detected the cosmic microwave background (CMB) 
spectrum, which corresponds to black-body radiation at around 3 K [5]. 
Observations in different parts of the electromagnetic spectrum provide 
information about different physical processes. Therefore, the combination of 
results  of  observations  in  different  frequency  bands  helps  researchers 
achieve a comprehensive understanding of astronomical sources. Figure 1-1 
shows an image of the central part of the galaxy Messier 77 (M77) formed by 
combining the images obtained from radio and optical telescopes. 
1
Figure 1-1. Images of M77. 
Top: Image of the central part of M77 formed by combining images from a radio 
telescope (Atacama Large Millimeter/submillimeter Array) and an optical telescope 
(Hubble Space Telescope). 
Bottom:  The  original  images  obtained  by  the  radio  (left)  and  optical  (right) 
telescopes. 
The yellow, red, and blue in the ALMA image represent cyanoacetylene (HC N), 
3
carbon  monosulfide  (CS),  and  carbon  monoxide  (CO),  respectively.  HC N  is 
3
abundant in the central part of the galaxy (CND), CO is mainly distributed in the 
starburst ring, and CS appears in both the CND and starburst ring. 
Credits: ALMA (ESO/NAOJ/NRAO), S. Takano et al. NASA/ESA Hubble Space 
Telescope and Andre van der Hoeven. 
2
1.2. ALMA telescope 
 
Figure 1-2. Atacama Compact Array (Morita Array) of the ALMA telescope. This 
array comprises four 12 m antennas and twelve 7 m antennas capable of making 
extended observations of celestial objects with high sensitivity. In contrast, fifty 
12 m antennas do not display high sensitivity to extended objects, but they can 
observe compact objects in detail with extremely high resolution. 
Credit: ALMA (ESO/NAOJ/NRAO). 
ALMA, the Atacama Large Millimeter/submillimeter Array, located in the 
Atacama Desert in Chile at an altitude of 5000 m, is the world’s largest 
radio-astronomy interferometer. Composed of fifty-four 12-m- and twelve 
7-m-diameter antennas, the array was constructed by international partners 
from Europe, North America, and East Asia. ALMA, a complete imaging and 
spectroscopic  instrument  operating  at  millimeter-to-submillimeter 
wavelengths,  provides  scientists  with  the  capabilities  and  wavelength 
coverage that complement the capacities of other research facilities of its era, 
such as the planned Thirty Meter Telescope (TMT) [6]. 
Atmospheric  water  vapor  readily  absorbs  submillimeter  radiation 
(frequencies of 300 GHz to 3 THz and wavelengths of 1 mm to 0.1 mm). Thus, 
the  Atacama  Desert  was  chosen  for  the  ALMA  site  because  of  its  high 
altitude and dry air. The site is large and open, allowing easy repositioning 
of the antennas over a region at least 16 km across. Each antenna receives 
radio signals from space, capturing both amplitude and phase. By operating 
as an interferometer that combines these signals, the array functions as a 
3
huge single dish that offers observations with unprecedented resolution. 
ALMA  enables  transformational  research  into  the  physics  of  the  cold 
universe, regions that are optically dark but shine brightly in the millimeter 
portion of the electromagnetic spectrum. With its state-of-the-art technology, 
ALMA offers breakthrough data-gathering to aid in solving many significant 
problems faced by astronomers, astrophysicists, planetary scientists, and 
astrobiologists  studying  the  questions  the  universe  presents.  These 
questions ask, for instance, “How was the first galaxy formed after the Big 
Bang?”, “How were the solar system and planets formed?”, and “What clues 
may help to explain the origin of life?” 
Figure  1-3  shows  an  image  of  the  high-density  condensation  of 
MC27/L1521. By offering high-sensitivity and high-resolution observations, 
ALMA has aided in determining whether the center of MC27 contains not 
only gas that surrounds the central protostar but also two high-density gas 
condensations [7]. 
4
Description:ALMA Band10 receiver: Test Systems/ Performance and Mass production .. results of observations in different frequency bands helps researchers achieve a comprehensive understanding of astronomical sources. one Aluminum frame, a so-called “grid box”, to minimize the beam squint.