Table Of Content12
AAbbssttrraacc ttss
1122tthh  CCoonnggrreessss  ooff  tthhee
EEuurrooppeeaann  SSoocciieettyy  ffoorr  AAggrroonnoommyy
HHeellssiinnkkii,,  FFiinnllaanndd,,  2200--2244  AAuugguusstt  22001122
Maataloustieteiden laitoksen  julkaisuja 14
ESA12, Helsinki, Finland, 20–24 August 2012
ORGANISERS, SUPPORTERS, EXHIBITORS, SPONSORS
CID
Bio-Science
Inc.
Portable Instruments for Precision Plant Measurement
2
ESA12, Helsinki, Finland, 20–24 August 2012
12th Congress of the
European Society for Agronomy
Helsinki, Finland, 20-24 August 2012
Abstracts
3
ESA12, Helsinki, Finland, 20–24 August 2012
Abstracts of ESA12, the 12th Congress of the European Society for Agronomy, Helsinki, Finland 20-24 August 2012.
Edited by F.L. Stoddard and Pirjo Mäkelä. 
Reviewers:
Marc Benoit Jaume Lloveras
Olaf Christen Donal Murphy-Bokern
José Paulo de Melo e Abreu Sari Peltonen
Marcello Donatelli Krystyna Rykacewska
Henrik Eckersten Roxana Savin
Brian Fowler Jaswinder Singh
Felix Herzog Elizabeth Stockdale
Heikki Hokkanen Hartmut Stützel
Kari Jokinen Muriel Valantin-Morison
John Kirkegaard Christine Watson
Jouko Kleemola Jacques Wery
Kristina Lindström Xinyou Yin
Helsinki, Finland: University of Helsinki, Department of Agricultural Sciences publication series, volume 14.
ISBN is 978-952-10-4323-9  (online)
ISSN 1798-744X  (online)
ISSN-L 1798-7407
Layout:
Tinde Päivärinta/PSWFolders Oy
4
ESA12, Helsinki, Finland, 20–24 August 2012
5
ESA12, Helsinki, Finland, 20–24 August 2012
131-1
 Parameterisation of a phenological model of winter 
oilseed rape 
Böttcher, Ulf1; Rampin, Enrico2; Flenet, Francis3; Kage, Henning1
1CAU Kiel, GERMANY; 2University of Padova, ITALY; 3CETIOM, FRANCE 
Introduction extended  to  calculate  phenological  development  in 
a  higher  resolution  using  the  BBCH  coding  system.
For many purposes a detailed description of phenological 
Phenological  development  is  mainly  driven  by  the 
development is needed. It is essential for the timing of 
daily  mean  temperature  above  a  base  temperature 
management measures, it is needed for an understanding 
of 3°C. In the phase from emergence until the end of 
of how weather conditions in diff erent phases of the 
stem  elongation  it  is  additionally  infl uenced  by  the 
growth might infl uence the yield formation and also 
eff ects  of  vernalisation  and  photoperiodic  response.
crop simulation models rely on an accurate description 
The model was parameterised and validated using a large 
of  development  for  the  timing  of  diff erent  growth 
amount of data originating from diff erent sources in 
processes. For winter oilseed rape (WOSR) a detailed 
Germany, France and Italy. The data are covering locations 
phenological model with high resolution is still missing. 
in all WOSR growing regions in Germany and France and 
Furthermore in WOSR the concurrent development of 
one location in northern Italy. The data were collected 
vegetative, generative and reproductive organs on OSR 
from  1993  until  2010  and  contain  diff erent  varieties.
plants makes OSR phenological surveys complicated and 
The parameterisation was performed stepwise starting 
imprecise. In this study we aimed to achieve a robust 
with parameters infl uencing the fi rst development step 
parameterisation of a phenological model valid for a wide 
and data relevant for this period and then going on to 
range of environments and varieties by using a very large 
parameters in the later stages of development. 
data set without requiring too much precision of every 
single observation. 
Results
Material and Methods The model is able to predict diff erences in the phenological 
development  for  diff erent  environments  only  based 
The  phenological  model  BRASNAP-PH  (Habekotté 
on  diff erences  in  weather  data  with  one  common 
1997)  was  implemented  in  the  object  oriented 
parameterisation for all locations. The comparison of 
modelling  framework  HUME  (Kage  &  Stützel 
one location in Germany and the Italian location shows 
1999)  which  allows  for  parameter  optimisation 
that due to a much earlier sowing date the development 
using  large  data  sets.  Furthermore  the  model  was 
advances further in Germany than in Italy before winter 
(Fig. 1). In spring however development is much faster in 
Italy due to higher temperatures. The overall prediction 
accuracy  of  the  model  for  the  validation  data  set  is 
characterised by a root mean squared error (RMSE) of 
2.8 BBCH stages or 21.2 days. The regression line of 
simulated vs. observed data is very close to the 1:1 line 
with an r² of 0.97 (Fig. 2). The highest deviation in terms 
of days between measured and simulated occurrence of 
the BBCH stages is in the phase from emergence to the 
beginning of stem elongation. All other phases have an 
RMSE of less than 9.5 days. 
Figure 1: Overall model performance for arbitrarily chosen 
validation datasets of Germany (Gerswalde, 2002) and 
Italy (Legnaro, 2009). 
6
ESA12, Helsinki, Finland, 20–24 August 2012
131-1
Conclusion
The model presented is an effi  cient prediction tool for 
the  winter  oilseed  rape  phenology  according  to  the 
BBCH coding system. It was able to predict the crop 
development with a high degree of accuracy for a large 
range of years, sowing dates and locations across France, 
Germany and Italy. 
References
Habekotté, B., 1997: A model of the phenological 
development of winter oilseed rape (Brassica napus L.). 
Field Crops Res. 54, 127-136.
Figure 2: Simulated vs. observed BBCH stages for the vali- Kage, H., Stützel, H., 1999. HUME: An object oriented 
component library for generic modular modelling 
dation data set. Solid line is the linear regression, dashed 
of dynamic systems. In: Donatelli, M., Stockle, C., 
line the 1:1 line.
Villalobos, F., Villar Mir, M. (Eds.), Modelling Cropping 
Systems. European Society of Agronomy, Lleida, pp. 
299-300. 
7
ESA12, Helsinki, Finland, 20–24 August 2012
131-2
Sink strength for S as a major parameter to model 
vegetative growth in oilseed rape (Brassica napus L.) 
under contrasting sulfur (S) supplies 
Brunel-Muguet, Sophie1; Goudier, Damien2; Trouverie, Jacques2; Avice, Jean Christophe2; Etienne, Philippe2; 
Mollier, Alain1; Ourry, Alain2
1National Institute of Agronomic Research (INRA), FRANCE; 2Université Caen Basse Normandie, FRANCE 
Introduction Material and Methods
Oilseed rape (Brassica napus L.) production will be faced  Plant cultivation and growth
to  an  increasing  demand  in  the  next  three  decades  Plants (n=3) cv.Yudal were grown in greenhouse under 
because of higher worldwide needs for edible oil and  two contrasting S supplies (high S, HS and low S, LS) 
biofuel industry. Besides, it is a high sulfur (S) demanding  and collected at 4 harvest dates until early fl owering 
crop (Zhao et al., 1999). The dwindling occurrence of S  corresponding to GS16, GS30, GS55, and GS65 (BBCH 
defi ciency due to reductions in (i) sulfur dioxide emissions  decimal system, Lancashire et al., 1991). At each harvest, 
from  industrial  activities  and  (ii)  high  S  containing  leaf area of photosynthetic leaves (LAph including green 
fertilizers (Blair, 2002) has led to consider S nutrition  and senescing leaves) and dry weight (DW) of each organ 
as a burning issue to maintain high yield and to meet  were  measured  and  S  amount  (Q )  was  determined 
S
nutritional  and  energetic  objectives.  In  this  study,  a  by  mass  spectrometry.  Temperature  and  incident 
model of the vegetative growth has been developed to  radiation were hourly recorded for thermal time (TT) and 
highlight the most important carbon (C) and S related  photosynthetically active radiation (PAR) calculations. 
processes that drive vegetative growth under contrasting 
S supplies. 
(cid:18)(cid:3)(cid:258)(cid:400)(cid:400)(cid:349)(cid:373)(cid:349)(cid:367)(cid:258)(cid:410)(cid:349)(cid:381)(cid:374)
Temperature PAR SO 2-
4
potentialgrowth leafarea x interceptedPAR Rootuptakeand internal
of leaves (eq. Monteith)  leavesremobilisation
C source SS  ssoouurrccee
Total C offer=dTDW Total S offer=dQS
Hypothesis:  Hypothesis: 
Priorityto the leaves Priorityto the leaves
(cid:94)(cid:3)(cid:396)(cid:286)(cid:373)(cid:381)(cid:271)(cid:349)(cid:367)(cid:349)(cid:460)(cid:258)(cid:410)(cid:349)(cid:381)(cid:374)
CC ddeemmaannddffoorr lleeaavveess SS ddeemmSSaann ssddooffuuoorrrrcc eelleeaavveess
dLA dDW (cid:198)(cid:198)(cid:198)(cid:198)dLA dQS (cid:198)(cid:198)(cid:198)(cid:198)dLA
Pot LA C LA S
(cid:18)(cid:3)(cid:258)(cid:374)(cid:282)(cid:3)(cid:94)(cid:3)(cid:367)(cid:381)(cid:400)(cid:400)(cid:286)(cid:400)
(cid:94)(cid:3)(cid:258)(cid:400)(cid:400)(cid:349)(cid:373)(cid:349)(cid:367)(cid:258)(cid:410)(cid:349)(cid:381)(cid:374)
dLA =min (dLA ,dLA , dLA )
effective Pot C S
(cid:94)(cid:3)(cid:437)(cid:393)(cid:410)(cid:258)(cid:364)(cid:286)(cid:3)
(cid:44)(cid:455)(cid:393)(cid:381)(cid:410)(cid:346)(cid:286)(cid:400)(cid:286)(cid:400)
(cid:18)(cid:3)(cid:373)(cid:286)(cid:410)(cid:258)(cid:271)(cid:381)(cid:367)(cid:349)(cid:400)(cid:373) (cid:94)(cid:3)(cid:373)(cid:286)(cid:410)(cid:258)(cid:271)(cid:381)(cid:367)(cid:349)(cid:400)(cid:373)
•(cid:17)(cid:349)(cid:381)(cid:373)(cid:258)(cid:400)(cid:400)(cid:393)(cid:396)(cid:381)(cid:282)(cid:437)(cid:272)(cid:410)(cid:349)(cid:381)(cid:374)(cid:3)(cid:282)(cid:396)(cid:349)(cid:448)(cid:286)(cid:374)(cid:271)(cid:455)(cid:3)(cid:349)(cid:87)(cid:4)(cid:90) •(cid:90)(cid:104)(cid:28)(cid:3)(cid:349)(cid:400)(cid:349)(cid:374)(cid:282)(cid:286)(cid:393)(cid:286)(cid:374)(cid:282)(cid:258)(cid:374)(cid:410)(cid:381)(cid:296)(cid:3)(cid:94)(cid:3)(cid:258)(cid:448)(cid:258)(cid:367)(cid:349)(cid:258)(cid:271)(cid:349)(cid:367)(cid:349)(cid:410)(cid:455)
•(cid:18)(cid:3)(cid:381)(cid:296)(cid:296)(cid:286)(cid:396)(cid:410)(cid:258)(cid:364)(cid:286)(cid:400)(cid:349)(cid:374)(cid:410)(cid:381)(cid:258)(cid:272)(cid:272)(cid:381)(cid:437)(cid:374)(cid:410) (cid:410)(cid:346)(cid:286)(cid:3)(cid:296)(cid:258)(cid:367)(cid:367)(cid:381)(cid:296)(cid:3) •(cid:94)(cid:3)(cid:381)(cid:296)(cid:296)(cid:286)(cid:396)(cid:410)(cid:258)(cid:364)(cid:286)(cid:400)(cid:349)(cid:374)(cid:410)(cid:381)(cid:258)(cid:272)(cid:272)(cid:381)(cid:437)(cid:374)(cid:410)(cid:410)(cid:346)(cid:286)(cid:3)(cid:296)(cid:258)(cid:367)(cid:367)(cid:381)(cid:296)(cid:3)(cid:367)(cid:286)(cid:258)(cid:448)(cid:286)(cid:400)
(cid:367)(cid:286)(cid:258)(cid:448)(cid:286)(cid:400)(cid:282)(cid:437)(cid:396)(cid:349)(cid:374)(cid:336)(cid:400)(cid:286)(cid:395)(cid:437)(cid:286)(cid:374)(cid:410)(cid:349)(cid:258)(cid:367)(cid:400)(cid:286)(cid:374)(cid:286)(cid:400)(cid:272)(cid:286)(cid:374)(cid:272)(cid:286) (cid:282)(cid:437)(cid:396)(cid:349)(cid:374)(cid:336)(cid:400)(cid:286)(cid:395)(cid:437)(cid:286)(cid:374)(cid:410)(cid:349)(cid:258)(cid:367)(cid:400)(cid:286)(cid:374)(cid:286)(cid:400)(cid:272)(cid:286)(cid:374)(cid:272)(cid:286)
•(cid:62)(cid:286)(cid:258)(cid:448)(cid:286)(cid:400)(cid:18)(cid:3)(cid:282)(cid:286)(cid:373)(cid:258)(cid:374)(cid:282)(cid:349)(cid:400)(cid:393)(cid:396)(cid:349)(cid:373)(cid:258)(cid:396)(cid:455)(cid:400)(cid:258)(cid:410)(cid:349)(cid:400)(cid:296)(cid:349)(cid:286)(cid:282) •(cid:62)(cid:286)(cid:258)(cid:448)(cid:286)(cid:400)(cid:94)(cid:3)(cid:282)(cid:286)(cid:373)(cid:258)(cid:374)(cid:282)(cid:349)(cid:400)(cid:393)(cid:396)(cid:349)(cid:373)(cid:258)(cid:396)(cid:455)(cid:400)(cid:258)(cid:410)(cid:349)(cid:400)(cid:296)(cid:349)(cid:286)(cid:282)(cid:271)(cid:437)(cid:410)(cid:3)(cid:410)(cid:258)(cid:364)(cid:286)(cid:400)
(cid:349)(cid:374)(cid:410)(cid:381)(cid:258)(cid:272)(cid:272)(cid:381)(cid:437)(cid:374)(cid:410) (cid:94)(cid:3)(cid:258)(cid:367)(cid:367)(cid:381)(cid:272)(cid:258)(cid:410)(cid:349)(cid:381)(cid:374)(cid:3)(cid:396)(cid:258)(cid:410)(cid:286)(cid:400)(cid:3)(cid:437)(cid:374)(cid:282)(cid:286)(cid:396)(cid:62)(cid:381)(cid:449)(cid:94)
Figure 1. Modelling C/S whole-plant functioning.
8
ESA12, Helsinki, Finland, 20–24 August 2012
131-2
(cid:894)(cid:3)(cid:4)(cid:895)(cid:3)(cid:62)(cid:4)(cid:393)(cid:346) (cid:894)(cid:373)(cid:1016)(cid:895) (cid:894)(cid:17)(cid:895)(cid:3)(cid:100)(cid:381)(cid:410)(cid:258)(cid:367)(cid:3)(cid:24)(cid:396)(cid:455)(cid:3)(cid:116)(cid:286)(cid:349)(cid:336)(cid:346)(cid:410)(cid:894)(cid:336)(cid:895) (cid:894)(cid:18)(cid:895)(cid:3)(cid:94)(cid:3)(cid:258)(cid:373)(cid:381)(cid:437)(cid:374)(cid:410)(cid:349)(cid:374)(cid:3)(cid:367)(cid:286)(cid:258)(cid:448)(cid:286)(cid:400)(cid:894)(cid:373)(cid:336)(cid:895)
0,20 18 140
(cid:381)(cid:271)(cid:400)(cid:286)(cid:396)(cid:448)(cid:286)(cid:282)(cid:44)(cid:94)(cid:3) (cid:39)(cid:94)(cid:1010)(cid:1009)
16 120
(cid:381)(cid:271)(cid:400)(cid:286)(cid:396)(cid:448)(cid:286)(cid:282)(cid:62)(cid:94)(cid:3)
0,15 14
(cid:393)(cid:396)(cid:286)(cid:282)(cid:349)(cid:272)(cid:410)(cid:286)(cid:282)(cid:44)(cid:94)(cid:3) 100
12
(cid:393)(cid:396)(cid:286)(cid:282)(cid:349)(cid:272)(cid:410)(cid:286)(cid:282)(cid:62)(cid:94)(cid:3)
(cid:39)(cid:94)(cid:1009)(cid:1009) 10 80
0,10
8 60
(cid:39)(cid:94)(cid:1007)(cid:1004)
6
0,05 4 40 (cid:44)(cid:62)(cid:94)(cid:94)(cid:855)(cid:855)(cid:3)(cid:28)(cid:3)(cid:28)(cid:38)(cid:38)(cid:1089)(cid:1089)(cid:1004)(cid:1004)(cid:856)(cid:856)(cid:1013)(cid:1013)(cid:1013)(cid:1013)
(cid:39)(cid:94)(cid:1005)(cid:1010) (cid:44)(cid:94)(cid:855)(cid:3)(cid:28)(cid:38)(cid:1089)(cid:1004)(cid:856)(cid:1013)(cid:1013) (cid:44)(cid:94)(cid:855)(cid:3)(cid:28)(cid:38)(cid:1089)(cid:1004)(cid:856)(cid:1011)(cid:1008) 20
2
(cid:62)(cid:94)(cid:855)(cid:3)(cid:28)(cid:38)(cid:1089)(cid:1004)(cid:856)(cid:1013)(cid:1012) (cid:62)(cid:94)(cid:855)(cid:3)(cid:28)(cid:38)(cid:1089)(cid:1004)(cid:856)(cid:1013)(cid:1010)
0,00 0 0
0 200 400 600 800 0 200 400 600 800 0 200 400 600 800
(cid:100)(cid:346)(cid:286)(cid:396)(cid:373)(cid:258)(cid:367)(cid:3)(cid:100)(cid:349)(cid:373)(cid:286)(cid:3)(cid:258)(cid:296)(cid:410)(cid:286)(cid:396)(cid:448)(cid:286)(cid:396)(cid:374)(cid:258)(cid:367)(cid:349)(cid:400)(cid:258)(cid:410)(cid:349)(cid:381)(cid:374)(cid:3)(cid:894)(cid:931)(cid:18)(cid:282)(cid:853)(cid:100)(cid:271)(cid:1008)(cid:895)
(cid:38)(cid:349)(cid:336)(cid:437)(cid:396)(cid:286)(cid:1006)(cid:855)(cid:75)(cid:271)(cid:400)(cid:286)(cid:396)(cid:448)(cid:258)(cid:410)(cid:349)(cid:381)(cid:374)(cid:400)(cid:258)(cid:374)(cid:282)(cid:393)(cid:396)(cid:286)(cid:282)(cid:349)(cid:272)(cid:410)(cid:349)(cid:381)(cid:374)(cid:400)(cid:381)(cid:296)(cid:894)(cid:4)(cid:895) (cid:367)(cid:286)(cid:258)(cid:296)(cid:258)(cid:396)(cid:286)(cid:258)(cid:381)(cid:296)(cid:393)(cid:346)(cid:381)(cid:410)(cid:381)(cid:400)(cid:455)(cid:374)(cid:410)(cid:346)(cid:286)(cid:410)(cid:349)(cid:272)(cid:367)(cid:286)(cid:258)(cid:448)(cid:286)(cid:400)(cid:894)(cid:62)(cid:4) (cid:895)(cid:853)(cid:894)(cid:17)(cid:895)(cid:100)(cid:381)(cid:410)(cid:258)(cid:367)(cid:24)(cid:396)(cid:455)(cid:116)(cid:286)(cid:349)(cid:336)(cid:346)(cid:410)(cid:258)(cid:374)(cid:282)(cid:894)(cid:18)(cid:895)(cid:94)(cid:258)(cid:373)(cid:381)(cid:437)(cid:374)(cid:410)(cid:349)(cid:374)(cid:393)(cid:346)(cid:381)(cid:410)(cid:381)(cid:400)(cid:455)(cid:374)(cid:410)(cid:346)(cid:286)(cid:410)(cid:349)(cid:272)
(cid:393)(cid:346)
(cid:367)(cid:286)(cid:258)(cid:448)(cid:286)(cid:400)(cid:437)(cid:374)(cid:282)(cid:286)(cid:396)(cid:44)(cid:94)(cid:258)(cid:374)(cid:282)(cid:62)(cid:94)(cid:856)(cid:68)(cid:381)(cid:282)(cid:286)(cid:367)(cid:28)(cid:296)(cid:296)(cid:349)(cid:272)(cid:349)(cid:286)(cid:374)(cid:272)(cid:455)(cid:894)(cid:28)(cid:38)(cid:895)(cid:349)(cid:400)(cid:336)(cid:349)(cid:448)(cid:286)(cid:374)(cid:296)(cid:381)(cid:396)(cid:271)(cid:381)(cid:410)(cid:346)(cid:94)(cid:882)(cid:410)(cid:396)(cid:286)(cid:258)(cid:410)(cid:373)(cid:286)(cid:374)(cid:410)(cid:400)(cid:349)(cid:374)(cid:349)(cid:374)(cid:400)(cid:286)(cid:396)(cid:410)(cid:856)
Ecophysiological model construction  Diff erences in leaf sink strength were observed between 
 The build-up of the model was based on the dynamics  S treatments from pod development 
of off er and demand as in other crop models which  Diff erence in sink strength can be accounted for either 
combine the eff ects of C assimilation (Monteith et al.,  sink size and/or sink activity. According to S supplies, S 
1977) and nutrient uptake and utilization (Brisson et al.,  allocation diff ers unlike C allocation. Altogether, these 
1998; Mollier et al., 2008). Eff ective LAph expansion rate  results mean that leaf S allocation is not only driven by the 
(LAER) was determined as the minimum of (i) potential  sink size but also by the sink activity i.e. S storage activity. 
LAER controlled by air temperature, (ii) LAER allowed by  High residual amount of SO42- (main storage form) in 
C assimilation and (iii) LAER allowed by S uptake. In our  senescing leaves under HS support this hypothesis (data 
model, allocation rules were assigned to C and S demands  not shown). 
of the leaves in order to test their sink strength for C and S 
throughout vegetative growth (Fig. 1) Conclusion
Modeling vegetative growth is of major importance to 
Results and discussion
determine the available pools of S and C for reproductive 
Model parameterization and evaluation parts and to avoid damages on pods by rectifying S 
Formalism used for S demand and off er diff er according  inputs.This  simulation  study  allows  the  importance 
to S-treatment of S related physiological processes (e.g. storage and 
Similar formalisms underlying C off er and leaf C demand  therefore capacity for remobilisation) to be focused on, 
were used for both LS and HS unlike S off er and demand.  by comparing plant responses to contrasting S supplies. 
Indeed,  RUE  values  were  not  statistically  diff erent 
between HS and LS. Besides, leaf C demand is primary  References
satisfi ed with similar C leaf allocation rates whatever S 
Blair GJ, 2002. Sulphur fertilisers: A global perspective. 
supply. By contrast, a sharp increase in S absorption was 
Proceedings No.498. International Fertiliser Society, 
observed at infl orescence emergence under HS only, 
York.
leading to diff erent adjustment for Q  uptake. Besides, 
S
S leaf allocation (% total Q ) decreased from 85 to 65%  Brisson N, et al, 1998. Agronomie 18, 311-346.
S
for HS and 55% for LS. Thus, although leaf S demand was 
Lancashire PD, Bleiholder H, Langelüddecke P, Stauss 
primary satisfi ed, leaf S allocation rates were introduced 
R, Van Den Boom T, Weber E, Witzen-Berger A. 1991. 
under LS to consider a signifi cant lower sink strength.
Annals Appl Biol 119, 561-601.
Simulations  of  LAph,  total  DW  and  Q   of  leaves 
S Mollier A, De Willigen P, Heinen M, Morel C, Schneider A, 
For  all  the  output  variables,  the  modeling  effi  ciency 
Pellerin S. 2008 Ecological Modelling 210, 453-464.
(EF) values indicated good accuracy (Fig. 2). Predictions 
underestimated  observed  values  under  HS  at  GS65  Monteith JL. 1977. Philos. Trans. R. Soc. Lond. B Biol. Sci. 
but diff erences between HS and LS observations were  281, 277–294.
correctly simulated.
Zhao FJ, Hawkesford MJ, McGrath S. 1999. J Cereal Sci 
30, 1-17.
9
ESA12, Helsinki, Finland, 20–24 August 2012
131-3
A new approach for calculating stomatal resistance 
of wheat as a step towards dynamic simulation of 
canopy temperature 
Neukam, Dorothee; Boettcher, Ulf; Kage, Henning
University of Kiel, GERMANY 
Introduction directly from the energy balance a new function of r was 
s
derived and implemented.
Under  given  meteorological  conditions  canopy 
temperature (T ) depends on actual transpiration and 
crop Results and Outlook
therefore is an indicator of drought stress. Fast and easy 
detection of spatial and temporal drought stress variation 
Temperature diff erences between treatments are clearly 
with infrared thermometry off ers useful applications for 
detectable (Fig. 1) indicating the cooling eff ect of high 
phenotyping,  site  specifi c  management  and  decision 
transpiration rates for the W1 and W2 plots resulting 
support. For these purposes T  must be normalized 
crop in T  being lower than T  in contrast to W0, where 
by meteorological conditions according to the energy  crop air
transpiration decreased resulting in T  being higher 
balance at the crop surface (Jackson et al. 1981). Then,  crop
than T . These fi ndings are also refl ected in the measured 
assuming steady state and fl ux independent resistances,  air
r (Fig. 2) being lower in the irrigated plots and not 
the  ratio  of  actual  to  potential  transpiration  can  be  s
increasing until withholding of irrigation. 
calculated, indicating stomata closure as consequence of 
limited water availability. For gaining information about 
the plant and soil parameters causing drought stress 
from T  a coupled soil crop atmosphere model capable 
crop
to simulate daily courses of T  provides a promising 
crop
framework. 
Materials and methods
For  model  development  and  parameterization  a 
plot  experiment  with  wheat  (Triticum  aestivum  cv. 
Dekan) within a rainout shelter was conducted in two 
years  (2010,  2011)  with  three  treatments  (W0  non 
irrigated  from  beginning  of  march,  W1  irrigated  to 
80%  fi eld  capacity  and  W2  to  100%  fi eld  capacity).  Fig.1 Midday air temperature (T ) and canopy to air tem-
air
Weekly  measurements  were  made  for  volumetric  perature diff erences (T ) in 2010. 
dif
water content at 5 depths (TDR), green area index (LAI 
2000) and canopy height. Minutely measured T , air 
crop
temperature (T ), relative humidity, wind speed and net 
air
radiation were averaged over an hour. An eff ective soil 
water potential within the rooted soil layer (ψ ) was 
root
derived from model calculations using measured water 
contents, soil texture and simulated root distribution.
From  May  until  July  diurnal  courses  of  stomatal 
conductance  (g)  for  water  vapour  were  measured 
s
(LI6400) on 4 fully expanded young leaves in one plot of 
each treatment. The reciprocal value of the measured g, 
s
converted from mole to velocity units (McDermitt 1990) 
and then averaged, gave the stomatal resistance (r).
s
Evapotranspiration was calculated at an hourly time step 
Fig2. Midday stomatal resistances (r) in 2010. 
using the model, coupling crop growth and soil water  s
balance. In order to calculate actual transpiration and T  
crop
10
Description:References. Habekotté, B., 1997: A model of the phenological development of winter oilseed rape (Brassica napus L.). Field Crops Res. 54, 127-136.