Table Of ContentCitation: W.-M.Yaoetal. (ParticleDataGroup),J.Phys.G33,1(2006)(URL:http://pdg.lbl.gov)
Quark and Lepton Compositeness,
Searches for
SEARCHES FOR QUARK AND
LEPTON COMPOSITENESS
Revised 2001 by K. Hagiwara (KEK), and K. Hikasa and
M. Tanabashi (Tohoku University).
If quarks and leptons are made of constituents, then at the
scale of constituent binding energies, there should appear new
interactionsamong quarks and leptons. At energies much below
the compositeness scale (Λ), these interactions are suppressed
by inverse powers of Λ. The dominant effect should come from
the lowest dimensional interactions with four fermions (contact
terms), whose most general chirally invariant form reads [1]
(cid:1)
2
g
µ µ
L = η ψ γµ ψ ψ γ ψ + η ψ γµψ ψ γ ψ
2Λ2 LL L L L L RR R R R R
(cid:2)
µ
+2η ψ γµψ ψ γ ψ . (1)
LR L L R R
Chiral invariance provides a natural explanation why quark and
lepton masses are much smaller than their inverse size Λ. We
may determine the scale Λ unambiguously by using the above
form of the effective interactions; the conventional method [1]
2 2
is to fix its scale by setting g /4π = g (Λ)/4π = 1 for the new
strong interaction coupling and by setting the largest magnitude
of the coefficients η to be unity. In the following, we denote
αβ
Λ = Λ± for (η , η , η ) = (±1, 0, 0) ,
LL LL RR LR
Λ = Λ± for (η , η , η ) = (0, ±1, 0) ,
RR LL RR LR
Λ = Λ± for (η , η , η ) = (±1, ±1, ±1) ,
VV LL RR LR
Λ = Λ± for (η , η , η ) = (±1, ±1, ∓1) , (2)
AA LL RR LR
HTTP://PDG.LBL.GOV Page 1 Created: 7/6/2006 16:36
Citation: W.-M.Yaoetal. (ParticleDataGroup),J.Phys.G33,1(2006)(URL:http://pdg.lbl.gov)
as typical examples. Such interactions can arise by constituent
interchange (when the fermions have common constituents, e.g.,
for ee → ee) and/or by exchange of the binding quanta (when-
ever binding quanta couple to constituents of both particles).
Another typical consequence of compositeness is the appear-
∗ ∗
ance of excited leptons and quarks ((cid:5) and q ). Phenomeno-
logically, an excited lepton is defined to be a heavy lepton
which shares leptonic quantum number with one of the existing
leptons (an excited quark is defined similarly). For example,
∗
an excited electron e is characterized by a nonzero transition-
magnetic coupling with electrons. Smallness of the lepton mass
and the success of QED prediction for g–2 suggest chirality
conservation, i.e., an excited lepton should not couple to both
left- and right-handed components of the corresponding lepton.
Excited leptons may be classified by SU(2)×U(1) quantum
numbers. Typical examples are:
1. Sequential type
(cid:3) (cid:4)
∗
ν
∗ ∗
, [ν ] , (cid:5) .
∗ R R
(cid:5)
L
∗ ∗
ν is necessary unless ν has a Majorana mass.
R
2. Mirror type
(cid:3) (cid:4)
∗
ν
∗ ∗
[ν ] , (cid:5) , .
L L ∗
(cid:5)
R
3. Homodoublet type
(cid:3) (cid:4) (cid:3) (cid:4)
∗ ∗
ν ν
, .
∗ ∗
(cid:5) (cid:5)
L R
Similar classification can be made for excited quarks.
Excited fermions can be pair produced via their gauge
couplings. The couplings of excited leptons with Z are listed
HTTP://PDG.LBL.GOV Page 2 Created: 7/6/2006 16:36
Citation: W.-M.Yaoetal. (ParticleDataGroup),J.Phys.G33,1(2006)(URL:http://pdg.lbl.gov)
Sequential type Mirror type Homodoublet type
V (cid:3)∗ −1 + 2sin2θ −1 + 2sin2θ −1 + 2sin2θ
2 W 2 W W
A(cid:3)∗ −1 +1 0
2 2
ν∗ 1 1
V D + + +1
2 2
AνD∗ +1 −1 0
2 2
ν∗
V M 0 0 —
AνM∗ +1 −1 —
in the following table (for notation see Eq. (1) in “Standard
Model of Electroweak Interactions”):
∗ ∗
Here ν (ν ) stands for Dirac (Majorana) excited neutrino.
D M
The corresponding couplings of excited quarks can be easily
obtained. Although form factor effects can be present for the
gauge couplings at q2 (cid:3)= 0, they are usually neglected.
In addition, transition magnetic type couplings with a
gauge boson are expected. These couplings can be generally
parameterized as follows:
(f∗)
L = λγ e f∗σµν(ηL1−2γ5 + ηR1+2γ5)fFµν
2mf∗
(f∗)
λZ e ∗ µν 1−γ 1+γ
+ f σ (ηL 2 5 + ηR 2 5)fZµν
2mf∗
((cid:3)∗)
λW g ∗ µν1−γ
+ (cid:5) σ 2 5νWµν
2m(cid:3)∗
(ν∗)
λ g
W ∗ µν 1−γ 1+γ †
+ ν σ (η 5 + η 5)(cid:5)W
L 2 R 2 µν
2mν∗
+ h.c. , (3)
HTTP://PDG.LBL.GOV Page 3 Created: 7/6/2006 16:36
Citation: W.-M.Yaoetal. (ParticleDataGroup),J.Phys.G33,1(2006)(URL:http://pdg.lbl.gov)
where g = e/sinθW, Fµν = ∂µAν − ∂νAµ is the photon field
strength, Zµν = ∂µZν − ∂νZµ, etc. The normalization of the
coupling is chosen such that
max(|η |,|η |) = 1 .
L R
Chirality conservation requires
η η = 0 . (4)
L R
Some experimental analyses assume the relation η =η =1,
L R
which violates chiral symmetry. We encode the results of such
analyses if the crucial part of the cross section is proportional
2 2
to the factor η + η and the limits can be reinterpreted as
L R
those for chirality conserving cases (η ,η ) = (1,0) or (0,1)
L R
after rescaling λ.
These couplings in Eq. (3) can arise from SU(2)×U(1)-
invariant higher-dimensional interactions. A well-studied
∗
model is the interaction of homodoublet type (cid:5) with the
Lagrangian [2,3]
L = 1 L∗σµν(gfτ2aWµaν + g(cid:2)f(cid:2)Y Bµν)1−2γ5L + h.c. , (5)
2Λ
where L denotes the lepton doublet (ν,(cid:5)), Λ is the compositeness
(cid:2) a
scale, g, g are SU(2) and U(1) gauge couplings, and W
Y µν
and Bµν are the field strengths for SU(2) and U(1)Y gauge
fields. The same interaction occurs for mirror-type excited
∗ ∗
leptons. For sequential-type excited leptons, the (cid:5) and ν
couplings become unrelated, and the couplings receive the extra
suppression of (250GeV)/Λ or mL∗/Λ. In any case, these
couplings satisfy the relation
√
λW = − 2sin2θW(λZ cotθW + λγ) . (6)
HTTP://PDG.LBL.GOV Page 4 Created: 7/6/2006 16:36
Citation: W.-M.Yaoetal. (ParticleDataGroup),J.Phys.G33,1(2006)(URL:http://pdg.lbl.gov)
Additional coupling with gluons is possible for excited
quarks:
(cid:5) (cid:6)
L =21ΛQ∗σµν gsfsλ2aGaµν + gfτ2aWµaν + g(cid:2)f(cid:2)Y Bµν
1−γ
× 5Q + h.c. , (7)
2
where Q denotes a quark doublet, gs is the QCD gauge coupling,
a
and G the gluon field strength.
µν
It should be noted that the electromagnetic radiative decay
of (cid:5)∗(ν∗) is forbidden if f = −f(cid:2) (f = f(cid:2)). These two possibili-
ties (f = f(cid:2) and f = −f(cid:2)) are investigated in many analyses of
the LEP experiments above the Z pole.
Several different conventions are used by LEP experiments
on Z pole to express the transition magnetic couplings. To
facilitate comparison, we re-express these in terms of λ and
Z
2
λγ using the following relations and taking sin θW = 0.23. We
assume chiral couplings, i.e., |c| = |d| in the notation of Ref. 2.
1. ALEPH (charged lepton and neutrino)
1
ALEPH
λ = λ (1990 papers) (8a)
Z Z
2
2c λ
Z
= (for |c| = |d|) (8b)
Λ m(cid:3)∗[or mν∗]
2. ALEPH (quark)
sinθ cosθ
ALEPH (cid:7) W W
λ = λ = 1.11λ (9)
u Z Z
1 2 8
− sin2θ + sin4θ
W W
4 3 9
3. L3 and DELPHI (charged lepton)
√
2
λL3 = λDELPHI = − λ = −1.10λ (10)
Z cotθ − tanθ Z Z
W W
HTTP://PDG.LBL.GOV Page 5 Created: 7/6/2006 16:36
Citation: W.-M.Yaoetal. (ParticleDataGroup),J.Phys.G33,1(2006)(URL:http://pdg.lbl.gov)
4. L3 (neutrino)
√
L3
f = 2λ (11)
Z Z
5. OPAL (charged lepton)
OPAL
f 2 λ λ
Z Z
= − = −1.56 (12)
Λ cotθW − tanθW m(cid:3)∗ m(cid:3)∗
6. OPAL (quark)
OPAL
f c λ
Z
= (for|c| = |d|) (13)
Λ 2mq∗
7. DELPHI (charged lepton)
1
λDγELPHI = −√ λγ (14)
2
If leptons are made of color triplet and antitriplet con-
stituents, we may expect their color-octet partners. Transitions
between the octet leptons ((cid:5)8) and the ordinary lepton ((cid:5)) may
take place via the dimension-five interactions
(cid:8)(cid:9) (cid:10) (cid:11) (cid:12)
1 α
L = (cid:5) g Fα σµν η (cid:5) + η (cid:5) + h.c. (15)
8 S µν L L R R
2Λ
(cid:3)
where the summation is over charged leptons and neutrinos.
The leptonic chiral invariance implies η η = 0 as before.
L R
References
1. E.J. Eichten, K.D. Lane, and M.E. Peskin, Phys. Rev. Lett.
50, 811 (1983).
2. K. Hagiwara, S. Komamiya, and D. Zeppenfeld, Z. Phys.
C29, 115 (1985).
3. N. Cabibbo, L. Maiani, and Y. Srivastava, Phys. Lett.
139B, 459 (1984).
SSSSCCCCAAAALLLLEEEE LLLLIIIIMMMMIIIITTTTSSSS ffffoooorrrr CCCCoooonnnnttttaaaacccctttt IIIInnnntttteeeerrrraaaaccccttttiiiioooonnnnssss:::: ΛΛΛΛ((((eeeeeeeeeeeeeeee))))
±
Limits are for Λ only. For other cases, see each reference.
LL
ΛL+L(TeV) ΛL−L(TeV) CL% DOCUMENTID TECN COMMENT
>>>>8888....3333 >>>>11110000....3333 95 1BOURILKOV 01 RVUE E = 192–208 GeV
cm
HTTP://PDG.LBL.GOV Page 6 Created: 7/6/2006 16:36
Citation: W.-M.Yaoetal. (ParticleDataGroup),J.Phys.G33,1(2006)(URL:http://pdg.lbl.gov)
• • • We do not use the following data for averages, fits, limits, etc. • • •
>4.7 >6.1 95 2ABBIENDI 04G Ecm= 130–207 GeV
>3.8 >5.6 95 ABBIENDI 00R OPAL Ecm= 189 GeV
>4.4 >5.4 95 ABREU 00S DLPH Ecm= 183–189 GeV
>4.3 >4.9 95 ACCIARRI 00P L3 Ecm= 130–189 GeV
>3.5 >3.2 95 BARATE 00I ALEP Ecm= 130–183 GeV
>6.0 >7.7 95 3BOURILKOV 00 RVUE E = 183–189 GeV
cm
>3.1 >3.8 95 ABBIENDI 99 OPAL E = 130–136, 161–172,
cm
183 GeV
>2.2 >2.8 95 ABREU 99A DLPH Ecm= 130–172 GeV
>2.7 >2.4 95 ACCIARRI 98J L3 Ecm= 130–172 GeV
>3.0 >2.5 95 ACKERSTAFF 98V OPAL Ecm= 130–172 GeV
>2.4 >2.2 95 ACKERSTAFF 97C OPAL Ecm= 130–136, 161 GeV
>1.7 >2.3 95 ARIMA 97 VNS E = 57.77 GeV
cm
>1.6 >2.0 95 4BUSKULIC 93Q ALEP Ecm=88.25–94.25 GeV
>1.6 95 4,5BUSKULIC 93Q RVUE
>2.2 95 BUSKULIC 93Q RVUE
>3.6 95 6KROHA 92 RVUE
>1.3 95 6KROHA 92 RVUE
>0.7 >2.8 95 BEHREND 91C CELL Ecm=35 GeV
>1.3 >1.3 95 KIM 89 AMY E =50–57 GeV
cm
>1.4 >3.3 95 7BRAUNSCH... 88 TASS E =12–46.8 GeV
cm
>1.0 >0.7 95 8FERNANDEZ 87B MAC Ecm=29 GeV
>1.1 >1.4 95 9BARTEL 86C JADE Ecm=12–46.8 GeV
>1.17 >0.87 95 10DERRICK 86 HRS E =29 GeV
cm
>1.1 >0.76 95 11BERGER 85B PLUT Ecm=34.7 GeV
1
A combined analysis of the data from ALEPH, DELPHI, L3, and OPAL.
√
2ABBIENDI 04G limits are from e+e− → e+e− cross section at s = 130–207GeV.
3
A combined analysis of the data from ALEPH, L3, and OPAL.
4
BUSKULIC93Qusesthefollowingprescriptiontoobtainthelimit: whenthenaive95%CL
limitisbetterthanthestatisticallyexpectedsensitivityforthelimit, thelatterisadopted
for the limit.
5
This BUSKULIC 93Q value is from ALEPH data plus PEP/PETRA/TRISTAN data re-
analyzed by KROHA 92.
6
KROHA 92 limit is from fit to BERGER 85B, BARTEL 86C, DERRICK 86B, FERNAN-
DEZ 87B, BRAUNSCHWEIG 88, BEHREND 91B, and BEHREND 91C. The fit gives
η/Λ2 = +0.230 ± 0.206 TeV−2.
LL
7BRAUNSCHWEIG 88 assumed m = 92 GeV and sin2θ = 0.23.
Z W
8FERNANDEZ 87B assumed sin2θW = 0.22.
9BARTEL 86C assumed mZ = 93 GeV and sin2θW = 0.217.
10DERRICK 86 assumed m = 93 GeV and g2 = (−1/2+2sin2θ )2 = 0.004.
Z V W
11BERGER 85B assumed mZ = 93 GeV and sin2θW = 0.217.
SSSSCCCCAAAALLLLEEEE LLLLIIIIMMMMIIIITTTTSSSS ffffoooorrrr CCCCoooonnnnttttaaaacccctttt IIIInnnntttteeeerrrraaaaccccttttiiiioooonnnnssss:::: ΛΛΛΛ((((eeeeeeeeµµµµµµµµ))))
±
Limits are for Λ only. For other cases, see each reference.
LL
ΛL+L(TeV) ΛL−L(TeV) CL% DOCUMENTID TECN COMMENT
>8.1 >>>>7777....3333 95 12ABBIENDI 04G Ecm= 130–207 GeV
>>>>8888....5555 >3.8 95 ACCIARRI 00P L3 Ecm= 130–189 GeV
HTTP://PDG.LBL.GOV Page 7 Created: 7/6/2006 16:36
Citation: W.-M.Yaoetal. (ParticleDataGroup),J.Phys.G33,1(2006)(URL:http://pdg.lbl.gov)
• • • We do not use the following data for averages, fits, limits, etc. • • •
>7.3 >4.6 95 ABBIENDI 00R OPAL Ecm= 189 GeV
>6.6 >6.3 95 ABREU 00S DLPH Ecm= 183–189 GeV
>4.0 >4.7 95 BARATE 00I ALEP Ecm= 130–183 GeV
>4.5 >4.3 95 ABBIENDI 99 OPAL E = 130–136, 161–172,
cm
183 GeV
>3.4 >2.7 95 ABREU 99A DLPH Ecm= 130–172 GeV
>3.6 >2.4 95 ACCIARRI 98J L3 Ecm= 130–172 GeV
>2.9 >3.4 95 ACKERSTAFF 98V OPAL Ecm= 130–172 GeV
>3.1 >2.0 95 MIURA 98 VNS E = 57.77 GeV
cm
>2.4 >2.9 95 ACKERSTAFF 97C OPAL Ecm= 130–136, 161 GeV
>1.7 >2.2 95 13VELISSARIS 94 AMY E =57.8 GeV
cm
>1.3 >1.5 95 13BUSKULIC 93Q ALEP Ecm=88.25–94.25 GeV
>2.6 >1.9 95 13,14BUSKULIC 93Q RVUE
>2.3 >2.0 95 HOWELL 92 TOPZ E =52–61.4 GeV
cm
>1.7 95 15KROHA 92 RVUE
>2.5 >1.5 95 BEHREND 91C CELL Ecm=35–43 GeV
>1.6 >2.0 95 16ABE 90I VNS Ecm=50–60.8 GeV
>1.9 >1.0 95 KIM 89 AMY E =50–57 GeV
cm
>2.3 >1.3 95 BRAUNSCH... 88D TASS Ecm=30–46.8 GeV
>4.4 >2.1 95 17BARTEL 86C JADE Ecm=12–46.8 GeV
>2.9 >0.86 95 18BERGER 85 PLUT E =34.7 GeV
cm
√
12ABBIENDI 04G limits are from e+e− → µµ cross section at s = 130–207GeV.
13
BUSKULIC 93Q and VELISSARIS 94 use the following prescription to obtain the limit:
when the naive 95%CL limit is better than the statistically expected sensitivity for the
limit, the latter is adopted for the limit.
14
This BUSKULIC 93Q value is from ALEPH data plus PEP/PETRA/TRISTAN data re-
analyzed by KROHA 92.
15
KROHA 92 limit is from fit to BARTEL 86C, BEHREND 87C, BRAUNSCHWEIG 88D,
BRAUNSCHWEIG89C, ABE 90I, andBEHREND91C. Thefit givesη/Λ2 =−0.155±
LL
0.095 TeV−2.
16ABE 90I assumed mZ =91.163 GeV and sin2θW = 0.231.
17BARTEL 86C assumed mZ = 93 GeV and sin2θW = 0.217.
18BERGER 85 assumed m = 93 GeV and sin2θ = 0.217.
Z W
SSSSCCCCAAAALLLLEEEE LLLLIIIIMMMMIIIITTTTSSSS ffffoooorrrr CCCCoooonnnnttttaaaacccctttt IIIInnnntttteeeerrrraaaaccccttttiiiioooonnnnssss:::: ΛΛΛΛ((((eeeeeeeeττττττττ))))
±
Limits are for Λ only. For other cases, see each reference.
LL
ΛL+L(TeV) ΛL−L(TeV) CL% DOCUMENTID TECN COMMENT
>4.9 >>>>7777....2222 95 19ABBIENDI 04G Ecm= 130–207 GeV
>>>>5555....4444 >4.7 95 ACCIARRI 00P L3 Ecm= 130–189 GeV
• • • We do not use the following data for averages, fits, limits, etc. • • •
>3.9 >6.5 95 ABBIENDI 00R OPAL Ecm= 189 GeV
>5.2 >5.4 95 ABREU 00S DLPH Ecm= 183–189 GeV
>3.9 >3.7 95 BARATE 00I ALEP Ecm= 130–183 GeV
>3.8 >4.0 95 ABBIENDI 99 OPAL E = 130–136, 161–172,
cm
183 GeV
>2.8 >2.6 95 ABREU 99A DLPH Ecm= 130–172 GeV
>2.4 >2.8 95 ACCIARRI 98J L3 Ecm= 130–172 GeV
>2.3 >3.7 95 ACKERSTAFF 98V OPAL Ecm= 130–172 GeV
HTTP://PDG.LBL.GOV Page 8 Created: 7/6/2006 16:36
Citation: W.-M.Yaoetal. (ParticleDataGroup),J.Phys.G33,1(2006)(URL:http://pdg.lbl.gov)
>1.9 >3.0 95 ACKERSTAFF 97C OPAL Ecm= 130–136, 161 GeV
>1.4 >2.0 95 20VELISSARIS 94 AMY E =57.8 GeV
cm
>1.0 >1.5 95 20BUSKULIC 93Q ALEP Ecm=88.25–94.25 GeV
>1.8 >2.3 95 20,21BUSKULIC 93Q RVUE
>1.9 >1.7 95 HOWELL 92 TOPZ E =52–61.4 GeV
cm
>1.9 >2.9 95 22KROHA 92 RVUE
>1.6 >2.3 95 BEHREND 91C CELL Ecm=35–43 GeV
>1.8 >1.3 95 23ABE 90I VNS Ecm=50–60.8 GeV
>2.2 >3.2 95 24BARTEL 86 JADE E =12–46.8 GeV
cm
√
19ABBIENDI 04G limits are from e+e− → ττ cross section at s = 130–207GeV.
20
BUSKULIC 93Q and VELISSARIS 94 use the following prescription to obtain the limit:
when the naive 95%CL limit is better than the statistically expected sensitivity for the
limit, the latter is adopted for the limit.
21
This BUSKULIC 93Q value is from ALEPH data plus PEP/PETRA/TRISTAN data re-
analyzed by KROHA 92.
22
KROHA 92 limit is from fit to BARTEL 86C BEHREND 89B, BRAUNSCHWEIG 89C,
ABE 90I, and BEHREND 91C. The fit gives η/Λ2 = +0.095 ± 0.120 TeV−2.
LL
23ABE 90I assumed mZ =91.163 GeV and sin2θW = 0.231.
24BARTEL 86 assumed m = 93 GeV and sin2θ = 0.217.
Z W
SSSSCCCCAAAALLLLEEEE LLLLIIIIMMMMIIIITTTTSSSS ffffoooorrrr CCCCoooonnnnttttaaaacccctttt IIIInnnntttteeeerrrraaaaccccttttiiiioooonnnnssss:::: ΛΛΛΛ(((((cid:5)(cid:5)(cid:5)(cid:5)(cid:5)(cid:5)(cid:5)(cid:5)(cid:5)(cid:5)(cid:5)(cid:5)(cid:5)(cid:5)(cid:5)(cid:5)))))
±
Lepton universality assumed. Limits are for Λ only. For other cases, see each
LL
reference.
ΛL+L(TeV) ΛL−L(TeV) CL% DOCUMENTID TECN COMMENT
>7.7 >>>>9999....5555 95 25ABBIENDI 04G Ecm= 130–207 GeV
>>>>9999....0000 >5.2 95 ACCIARRI 00P L3 Ecm= 130–189 GeV
• • • We do not use the following data for averages, fits, limits, etc. • • •
26
BABICH 03 RVUE
>6.4 >7.2 95 ABBIENDI 00R OPAL Ecm= 189 GeV
>7.3 >7.8 95 ABREU 00S DLPH Ecm= 183–189 GeV
>5.3 >5.5 95 BARATE 00I ALEP Ecm= 130–183 GeV
>5.2 >5.3 95 ABBIENDI 99 OPAL E = 130–136, 161–172,
cm
183 GeV
>4.4 >4.2 95 ABREU 99A DLPH Ecm= 130–172 GeV
>4.0 >3.1 95 27ACCIARRI 98J L3 Ecm= 130–172 GeV
>3.4 >4.4 95 ACKERSTAFF 98V OPAL Ecm= 130–172 GeV
>2.7 >3.8 95 ACKERSTAFF 97C OPAL Ecm= 130–136, 161 GeV
>3.0 >2.3 95 27,28BUSKULIC 93Q ALEP Ecm=88.25–94.25 GeV
>3.5 >2.8 95 28,29BUSKULIC 93Q RVUE
>2.5 >2.2 95 30HOWELL 92 TOPZ E =52–61.4 GeV
cm
>3.4 >2.7 95 31KROHA 92 RVUE
√
25ABBIENDI 04G limits are from e+e− → (cid:4)+(cid:4)− cross section at s = 130–207GeV.
26BABICH 03 obtain a bound −0.175 TeV−2 <1/Λ2 < 0.095 TeV−2 (95%CL) in a
LL
model independent analysis allowing all of Λ , Λ , Λ , Λ to coexist.
LL LR RL RR
27From e+e− → e+e−, µ+µ−, and τ+τ−.
28
BUSKULIC93Qusesthefollowingprescriptiontoobtainthelimit: whenthenaive95%CL
limitisbetterthanthestatisticallyexpectedsensitivityforthelimit, thelatterisadopted
for the limit.
HTTP://PDG.LBL.GOV Page 9 Created: 7/6/2006 16:36
Citation: W.-M.Yaoetal. (ParticleDataGroup),J.Phys.G33,1(2006)(URL:http://pdg.lbl.gov)
29
This BUSKULIC 93Q value is from ALEPH data plus PEP/PETRA/TRISTAN data re-
analyzed by KROHA 92.
30HOWELL 92 limit is from e+e− → µ+µ− and τ+τ−.
31KROHA 92 limit is from fit to most PEP/PETRA/TRISTAN data. The fit gives η/Λ2
LL
= −0.0200 ± 0.0666 TeV−2.
SSSSCCCCAAAALLLLEEEE LLLLIIIIMMMMIIIITTTTSSSS ffffoooorrrr CCCCoooonnnnttttaaaacccctttt IIIInnnntttteeeerrrraaaaccccttttiiiioooonnnnssss:::: ΛΛΛΛ((((eeeeeeeeqqqqqqqq))))
±
Limits are for Λ only. For other cases, see each reference.
LL
ΛL+L(TeV) ΛL−L(TeV) CL% DOCUMENTID TECN COMMENT
>>>>22223333....3333 >>>>11112222....5555 95 32CHEUNG 01B RVUE (eeuu)
>>>>11111111....1111 >>>>22226666....4444 95 32CHEUNG 01B RVUE (eedd)
>>>> 5555....6666 >>>>4444....9999 95 33BARATE 00I ALEP (eebb)
>>>> 1111....0000 >>>>2222....1111 95 34ABREU 99A DLPH (eecc)
• • • We do not use the following data for averages, fits, limits, etc. • • •
> 8.2 >3.7 95 35ABBIENDI 04G (eeqq)
> 5.9 >9.1 95 35ABBIENDI 04G (eeuu)
> 8.6 >5.5 95 35ABBIENDI 04G (eedd)
> 2.7 >1.7 95 CHEKANOV 04B ZEUS (eeqq)
> 2.8 >1.6 95 36ADLOFF 03 H1 (eeqq)
> 2.7 >2.7 95 37ACHARD 02J L3 (eetc)
> 5.5 >3.1 95 38ABBIENDI 00R OPAL (eeqq)
> 4.9 >6.1 95 38ABBIENDI 00R OPAL (eeuu)
> 5.7 >4.5 95 38ABBIENDI 00R OPAL (eedd)
> 4.2 >2.8 95 39ACCIARRI 00P L3 (eeqq)
> 2.4 >1.3 95 40ADLOFF 00 H1 (eeqq)
> 5.4 >6.2 95 41BARATE 00I ALEP (eeqq)
42
BREITWEG 00B ZEUS
> 4.4 >2.8 95 43ABBIENDI 99 OPAL (eeqq)
> 4.0 >4.8 95 44ABBIENDI 99 OPAL (eebb)
> 3.3 >4.2 95 45ABBOTT 99D D0 (eeqq)
> 2.4 >2.8 95 34ABREU 99A DLPH (eeqq) (d or s quark)
> 4.4 >3.9 95 34ABREU 99A DLPH (eebb)
> 1.0 >2.4 95 34ABREU 99A DLPH (eeuu)
> 4.0 >3.4 95 46ZARNECKI 99 RVUE (eedd)
> 4.3 >5.6 95 46ZARNECKI 99 RVUE (eeuu)
> 3.0 >2.1 95 47ACCIARRI 98J L3 (eeqq)
> 3.4 >2.2 95 48ACKERSTAFF 98V OPAL (eeqq)
> 4.0 >2.8 95 49ACKERSTAFF 98V OPAL (eebb)
> 9.3 >12.0 95 50BARGER 98E RVUE (eeuu)
> 8.8 >11.9 95 50BARGER 98E RVUE (eedd)
> 2.5 >3.7 95 51ABE 97T CDF (eeqq) (isosinglet)
> 2.5 >2.1 95 52ACKERSTAFF 97C OPAL (eeqq)
> 3.1 >2.9 95 53ACKERSTAFF 97C OPAL (eebb)
> 7.4 >11.7 95 54DEANDREA 97 RVUE eeuu, atomic parity viola-
tion
> 2.3 >1.0 95 55AID 95 H1 (eeqq) (u, d quarks)
1.7 >2.2 95 56ABE 91D CDF (eeqq) (u, d quarks)
> 1.2 95 57ADACHI 91 TOPZ (eeqq)
(flavor-universal)
HTTP://PDG.LBL.GOV Page 10 Created: 7/6/2006 16:36