Table Of ContentHome Search Collections Journals About Contact us My IOPscience
Quantum simulation of the Abelian-Higgs lattice gauge theory with ultracold atoms
This content has been downloaded from IOPscience. Please scroll down to see the full text.
2017 New J. Phys. 19 063038
(http://iopscience.iop.org/1367-2630/19/6/063038)
View the table of contents for this issue, or go to the journal homepage for more
Download details:
IP Address: 130.183.90.175
This content was downloaded on 14/08/2017 at 13:51
Please note that terms and conditions apply.
You may also be interested in:
Quantum simulations of lattice gauge theories using ultracold atoms in optical lattices
Erez Zohar, J Ignacio Cirac and Benni Reznik
Implementing quantum electrodynamics with ultracold atomic systems
V Kasper, F Hebenstreit, F Jendrzejewski et al.
Light-induced gauge fields for ultracold atoms
N Goldman, G Juzelinas, P Öhberg et al.
Quantum phase transitions in the collective degrees of freedom: nuclei and other many-body systems
Pavel Cejnar and Pavel Stránský
Lattice gauge tensor networks
Pietro Silvi, Enrique Rico, Tommaso Calarco et al.
Interaction-dependent photon-assisted tunneling in optical lattices: a quantum simulator of
strongly-correlated electrons and dynamical Gauge fields
Alejandro Bermudez and Diego Porras
Quantum simulation with interacting photons
Michael J Hartmann
Synthetic gauge potentials for ultracold neutral atoms
Yu-Ju Lin and I B Spielman
Building projected entangled pair states with a local gauge symmetry
Erez Zohar and Michele Burrello
NewJ.Phys.19(2017)063038 https://doi.org/10.1088/1367-2630/aa6f37
PAPER
QuantumsimulationoftheAbelian-Higgs latticegaugetheorywith
OPENACCESS ultracoldatoms
RECEIVED
17February2017 DanielGonzález-Cuadra1,2,3,ErezZohar2 andJIgnacioCirac2
REVISED 1 ICFO—TheInstituteofPhotonicSciences,Av.C.F.Gauss3,E-08860,Castelldefels(Barcelona),Spain
7April2017
2 Max-Planck-InstitutfürQuantenoptik,Hans-Kopfermann-Straße1,D-85748Garching,Germany
ACCEPTEDFORPUBLICATION 3 Authortowhomanycorrespondenceshouldbeaddressed.
25April2017
E-mail:[email protected]
PUBLISHED
30June2017
Keywords:latticegaugetheory,quantumsimulation,ultracoldatoms
Originalcontentfromthis
workmaybeusedunder
thetermsoftheCreative Abstract
CommonsAttribution3.0
WepresentaquantumsimulationschemefortheAbelian-Higgslatticegaugetheoryusingultracold
licence.
Anyfurtherdistributionof bosonicatomsinopticallattices.ThemodelcontainsbothgaugeandHiggsscalarfields,andexhibits
thisworkmustmaintain interestingphasesrelatedtoconfinementandtheHiggsmechanism.Themodelcanbesimulatedby
attributiontothe
author(s)andthetitleof anatomicHamiltonian,byfirstmappingthelocalgaugesymmetrytoaninternalsymmetryofthe
thework,journalcitation
andDOI. atomicsystem,theconservationofhyperfineangularmomentuminatomiccollisions.Byincluding
auxiliarybosonsinthesimulation,weshowhowtheAbelian-HiggsHamiltonianemergeseffectively.
Weanalyzetheaccuracyofourmethodintermsofdifferentexperimentalparameters,aswellasthe
effectofthefinitenumberofbosonsonthequantumsimulator.Finally,weproposepossible
experimentsforstudyingthegroundstateofthesystemindifferentregimesofthetheory,and
measuringinterestinghighenergyphysicsphenomenainrealtime.
1.Introduction
Thestudyofnaturalsystemsgovernedbythelawsofquantummechanicsisacomplicatedtask.Mostofthe
usualtheoreticalandnumericaltechniquesemployedtotacklethebehaviorofquantumsystemsbecomerapidly
overwhelmedoncetheirsizestartsincreasing.Inparticular,thecomputationalresourcesrequiredtosimulatea
quantummechanicalsystemusingaclassicalcomputerscaleexponentiallywiththenumberofitsconstituents.
ThissituationledRichardFeynmantothinkoftheconceptofaquantumsimulator[1].Accordingtohisidea,
suchadevicewouldbegoverneditselfbythelawsofquantummechanicsand,exploitingthisfact,couldbeused
tostudyotherquantummechanicalsystemsmoreefficiently.Feynman’sideawasformalizedasanalgorithm
thatcouldbeprocessedbyauniversalquantumcomputer[2].Thisisreferredtoasadigitalquantumsimulation,
sinceitisbasedonapproximatingthesimulatedsystem’sdynamicsbyapplyingadiscretesetofoperations
(quantumgates)onahighly-controllablequantumdevice.Quantumcomputersareveryinterestingfroma
theoreticalpointofview,since,inprinciple,theycouldsimulateanyotherphysicalsystemusingonly
polynomialresources,providedthatcertainlocalityconditionsarefulfilled[2].Fromtheexperimentalside,
however—andinspiteofthegreatadvancesoverthelastdecadesregardingthemanipulationofmicroscopic
quantumsystems—apracticalimplementationofafullyoperationalquantumcomputerisstillalong-
termgoal.
Notwithstanding,havingthesecontrollabledevicessowellstudiedandreachablemakesquantum
simulationareality,bymeansofsimplerquantumdevicesthatcanperformcalculationsbeyondthescopeof
classicalmachines.Inparticular,theso-calledanalogquantumsimulators,althoughmuchmorelimitedthanan
universalsimulator,canbeusedtostudyabroadrangeofquantumsystemswithinthereachoftoday’s
technologicalprogress[3,4].Analogsimulatorsactbymappingthedegreesoffreedomofthesimulatedsystem
tothoseofthesimulatingone.Thelattercanbecontrolledinthelaboratoryanditsdynamicscanbetailored(in
particular,thecorrespondingHamiltonian)tobeequivalenttothoseofthesystemwearetryingtostudy.This
©2017IOPPublishingLtdandDeutschePhysikalischeGesellschaft
NewJ.Phys.19(2017)063038 DGonzález-Cuadraetal
allowsustoobtaininformationaboutsystemsthatcannotbeaccessedexperimentally,byinvestigatingothers
forwhichstatepreparationandmeasurementsaremucheasiertasks.
Amongtherelevantplatformsthatcanserveasquantumsimulators,bothanaloganddigital,manyatomic
andopticalsystemsstandoutduetotheirremarkableexperimentalcontrollability.Someexamplesinclude
ultracoldatoms[5–9],trappedions[10–14],photonicsystems[15]andRydbergatoms[16].Ultracoldatomsin
opticallattices,inparticular,presentthepossibilityofrecreatingmanydifferentinteractions—suchasnearest-
neighbor,long-rangeforces,on-siteinteractions,etc—allowingforthesimulationofbothcondensedmatter
andhighenergyphysicsmodels.Solid-statesystems,suchasquantumdots[17–19]orsuperconductingcircuits
[20,21],alsoshowprominentresultsthatmaketheminterestingcandidatestoperformquantumsimulations.
Usingtheseideas,manycondensedmatterHamiltonianshavebeenconsideredforquantumsimulations,
someofthemevenrealizedexperimentally.Someexamplesincludespinsystems[14,22–24],suchastheIsingor
Heisenbergmodels;theBose–Hubbardmodel[5,25];theTonks–Girardeaugas[26],orcopper-oxide
superconductors[18].Externalgaugepotentialscanbesimulatedaswell,allowingforthestudyofthefractional
quantumHalleffect[27]andothertopologicalphenomena[28–31].
Quantumsimulationsofhighenergyphysicsmodels,althoughmoredemandingthantheircondensed
mattercounterparts,arealsopossible.SomeexamplesincludethesimulationoftheDirac[32–34]andMajorana
equations[35],theCasimirforce[36],theSchwingermechanism[37]ortheoscillationsofneutrinos[38,39].
Simulationsofquantumfieldtheories[40,41],gravitationaltheories[42]andblackholes[43,44]havebeen
proposedinrecentyears,someofthemrealizedexperimentallyaswell[45].
Withinhighenergyphysics,gaugetheoriesareparticularlyrelevant,sincetheylieinthecoreoftheStandard
Modelofparticlephysics[46–49];dynamicalgaugedegreesoffreedomareintroducedinquantumfieldtheories
toexplaintheinteractionsbetweenthebasicconstituentsofmatter,suchasquarksorelectrons.Many
techniqueshavebeendevelopedtostudysuchtheories.Someofthemrelyonperturbativeexpansionsaround
smallcouplingconstants.However,thesemethodslosetheirvalidityifonetriestoapplythemforthestudyof
non-perturbativephenomena,wheretherelevantcouplingconstantpresentslargevalues.Thisisthecaseforthe
interactionstrengthbetweenseparatedquarks,whichgrowswiththedistancebetweenthem(runningcoupling)
[46,47].Atshortdistances,theinteraction’scouplingconstantpresentssmallvalues(asymptoticfreedom)[50],
andtheperturbativemethodscanbeapplied.Atlongdistances,however,thegrowthintheinteractionstrength
givesrisetotheconfinementmechanism,implyingthatnofreequarkscanbefoundinnature,aclaimthatis
supportedbytheexperiments[47].Todealwiththisandothernon-perturbativephenomena,thelattice
formulationofgaugetheorieswasdeveloped[51,52],obtainingaproperframeworktoperformnumerical
simulationsonthesetheories—usingMonteCarlomethods,inparticular[53].
Thesetechniquesprovidedagreatadvanceintheunderstandingofparticlephysicsduringthelastdecades.
However,theypresentsomelimitationswhentheyareappliedtocertaincases.Anexampleisthesignproblem,
whichappearsinregimeswithafinitechemicalpotentialforfermionicparticles[54],andbecomesproblematic
forthestudyingofdifferentphasesofQCD,suchasthequark-gluonplasmaorthecolor-superconductingphase
[55].Theanalysisofreal-timedynamicsisalsolacking,sinceMonteCarlosimulationsonlyallowtocalculate
Euclideanspace–timecorrelationfunctionsinimaginarytime(afteraWickrotation).
Inthiscontext,twodifferentapproacheshavebeenrecentlyproposedtostudylatticegaugetheoriesinregimes
thatcannotbeaccessedusingprevioustechniques.Oneinvolvestheapplicationofmethodsbasedontensornetworks
[56–69].Anotherconsistsonperformingquantumsimulationsusinglowenergyquantumsystems.Incontrasttothe
caseofcondensedmattermodels,latticegaugetheoriesaremorecomplicatedtosimulateusinglowenergysystems,
suchasultracoldatoms,sincethegaugeandLorentzsymmetriesarenotnaturallypresentinthelatter.Inaddition,
simulatingbothgaugeandmatterfieldsusuallyrequirestheuseofbosonicandfermionicatoms,whichincreasesthe
experimentalcomplexity.Anyattempttosimulatethesestheoriesmusttakethesefactsintoaccount[70,71].
Someexamplesofsimulationproposalsforgaugetheoriesusingultracoldatomsincludeboththecontinuous
[72]andlatticeversionofQED,focusingespeciallyonthelattercase.Inparticular,analogsimulationsforcQED
wereproposedbothintheabsence[73,74]andpresenceofdynamicalmatter[75–78],wheregaugeinvariance
emergesasaneffectivesymmetry.RealizationsofU(1)gaugetheorieswithdynamicalorbackgroundHiggsfields,
usingeffectivegaugeinvariance,werediscussedin[79–81].In[70,82,83]thegaugesymmetryisobtainedexactlyby
mappingittoaninternalsymmetryoftheatomicsystem.Otherquantumsystemsthathavebeenconsideredfor
quantumsimulationsoflatticegaugetheoriesaresuperconductingcircuits[84,85],trappedions[86,87]and
Rydbergatoms[16,88].Discretesymmetrygroupshavebeenconsideredaswell,bothforanalog[70,89,90]and
digitalsimulations[91,92],aswellasnon-abeliantheories[93–100].Ageneralformalismfordigitalsimulationsof
latticegaugetheorieswithultracoldatomscanbefoundin[91].
Recently,thefirstexperimentalrealizationofaquantumsimulationofalatticegaugetheorywasperformed
[101],wherethereal-timedynamicsoftheSchwingermodelweresimulatedonafew-qubittrapped-ion
quantumcomputer.Thisexperimentopenedthedoorforstudyinghighenergyphysicsbeyondthecapabilities
ofclassicalsimulations.
2
NewJ.Phys.19(2017)063038 DGonzález-Cuadraetal
ThepresentworkisdevotedtothequantumsimulationoftheAbelian-Higgslatticegaugetheory,which
containsbothgaugeandHiggsscalarfields,usingultracoldbosonicatomsconfinedinopticallattices.Thiswill
bedonebymappingatomicsymmetriestolocalgaugeinvariance.Thepaperisorganizedasfollows.Insection2,
weintroducetheAbelian-Higgsmodel,whichisusedastoymodelinhighenergyphysicstostudytheHiggs
mechanism.Thismodeladmitsadiscretizeddescriptionasalatticegaugetheory,whosephasediagramshows,
apartfromthementionedmechanism,aconfinementphaseforthescalarHiggsfield.Weconsiderthe
Hamiltonianformulationofthemodel,moresuitedforquantumsimulationpurposes.Insection3,we
introducethenecessaryingredientstosimulatetheAbelian-HiggsHamiltonianusingultracoldatomsinoptical
lattices.First,thebasicpropertiesofthesimulatingsystemareexplained,startingwiththesecond-quantized
Hamiltonianthatdescribeanatomicsystemintheultracoldregime,aswellasthemostimportantexperimental
techniquesthatareneededtocontrolandmanipulateit.Then,weshowhowthedegreesoffreedomand
interactionsofthesimulatedmodel—and,inparticular,thelocalgaugesymmetry—canbemappedontothe
atomicsystem.Withthehelpofauxiliary‘hard-core’bosons,weshowhowthecompleteAbelian-Higgs
Hamiltonianemergeseffectivelyuptosomesmallcorrections.Finally,insection4,weintroducepossible
experimentstomeasureinterestinghighenergyphysicsphenomena,suchasthedynamicalbreakingofelectric
fluxlinesbetweenscalarcharges,effectthatisrelatedtoconfinement[102].
2.Thesimulatedmodel
Thespontaneousbreakingofasymmetryreferstoasituationcharacterizedbyagroundstatewhichisnot
invariantunderthesamesetoftransformationsasthetheory’sLagrangianorHamiltonian.TheHiggs
mechanism[103–106]describesthisphenomenoninthepresenceofa(local)gaugesymmetry.Itcanbeapplied,
forinstance,totheSU(2) ´ U(1)gaugegroup,associatedtotheelectroweakinteractionintheStandardModel
ofparticlephysics,explaininghowthecorrespondinggaugebosons,WandZ,acquireanon-zeromass[107].
Thebasicfeaturesofthemechanismcanbestudied,however,inamuchsimplercase,theAbelian-Higgsmodel
[46,108],involvingcomplexscalarfieldscoupledtoabeliangaugefields(appendixA.1).
TheAbelian-Higgsmodelcanbeformulatedasalatticegaugetheory[109–115],thisis,asafieldtheoryona
discretizedspace–time,invariantunderU(1)localtransformations.Thephasediagramofthetheoryshowsvery
interestingphenomena,relatedtotheHiggsmechanismandtheconfinementphenomenon(appendixA.2).
Forquantumsimulationpurposes,itismoreconvenienttoexpressthetheoryinaHamiltonian
formulation.Thismakesthemappingbetweenthesimulatingandthesimulatedsystem—inthiscase,ultracold
atomsinopticallattices—morestraightforward,sincethelatterisdescribedusuallyintermsofasecond-
quantizedmany-bodyHamiltonian.Here,weshallintroducetheAbelian-Higgsmodeldirectlyinthe
Hamiltonianformulation.Weobtainedtheformerbyapplyingthetransfermatrixmethodtothestandard
latticegaugeactionusedinthehighenergyphysicsliterature.Thedetailsofthesecalculationscanbefoundin
appendixB.
TheAbelian-Higgstheoryinvolvestwotypesoffields:gaugeandHiggsfields.Wewillformulateitonad
dimensionalspatialsquarelattice,withcontinuoustime,andwillfixthelatticespacinga=1.
Thegaugefieldsresideonthelinksofthelattice.Theyarerepresentedbytheunitaryoperators
Uˆn(q,k)º e-iqqˆn,k,residingonthelinks(joiningtheverticesnandn + kˆ,withkˆaunitvectorinoneofthed
orthogonaldirections).qisanintegerdenotingtheU(1)representation;wewillomititfromnowonandfocus
onthecaseq=1.Oneachlinkweintroduceanotheroperator,Eˆ ,withthecommutationrelations
n,k
[Eˆ , U† ] = d d U† . (1)
n,k n¢,k¢ k,k¢ n,n¢ n,k
Uˆ andUˆ† areunitaryoperatorsactingasladderoperatorswithrespecttoEˆ ,whichhasadiscretespectrum,
n,k n,k n,k
Eˆ ∣mñ = m ∣mñ , m Î . (2)
n,k n,k n,k n,k n,k
Wewillcallthelattertheelectricfieldoperator.Thecommutationrelations(1)definehowtheoperatorsUˆ and
n,k
Uˆ† actontheeigenstatesofEˆ ,
n,k n,k
Uˆ ∣mñ = ∣m - 1ñ , Uˆ† ∣mñ = ∣m + 1ñ . (3)
n,k n,k n,k n,k n,k n,k
TheHiggsfields,fˆn º e-ijˆn,whichresideontheverticesofthelattice,areunitaryoperatorsaswell.Their
Hilbertspacesareverysimilartotheseofthegaugefields;wedefinetheoperatorQˆ —referredasthecharge
n
operator—obeyingthecommutationrelations
[Qˆ , fˆ †] = d fˆ†, (4)
n n¢ n,n¢ n
3
NewJ.Phys.19(2017)063038 DGonzález-Cuadraetal
Figure1.Theplaquettetermcontainstheproductoffourgauge-fieldtermscorrespondingtothefourlinksofaplaquette.
havingQˆ ,again,adiscretespectrum.fˆ†andfˆ areunitaryoperatorsthatactasraisingandloweringoperators,
n n n
respectively,
fˆ ∣Qñ = ∣Q - 1ñ , fˆ†∣Qñ = ∣Q + 1ñ , (5)
n n n n n n
where∣Qñ isaneigenstateofthechargeoperatorQˆ .
n n
AlltheseingredientsappearintheAbelian-HiggsHamiltonian,
Hˆ = 2R12 åQˆn2- R22 å[fˆn†Uˆn†,kfˆn+kˆ + h.c.] + g22 åEˆn2,k - 21g2 å(Uˆn,iUˆn+iˆ,kUˆn†+kˆ,iUˆn†,k + h.c.),
n n,k n,k n,ik
(6)
wherethesumsinnandkrunovertheverticesandlinksofaspatiallatticeinddimensions,andthecoupling
constantsRandgareintroducedtorecoverthecontinuousAbelian-Higgsmodelinthelimita 0.The
Hamiltonian(6)iscomposedofanon-interactingpartwithlocalterms(chargeandelectricfield)forthevertices
andlinksofthelattice,andaninteractingpartthatincludesaplaquette-typeterm(figure1)thatcreateselectric
fieldexcitationsalongthefourlinksofaplaquette,andnearest-neighborvertexcouplings,mediatedbyan
excitationonthelinkthatjoinsthem.Thesecondrowinequation(6)corresponds,inparticular,tothepure-
gaugeKogut–SusskindHamiltonian[116].
IntheHamiltonianformulationoflatticegaugetheories,thegaugeisfixedinthetemporaldirection,
q = 0(appendixB).However,itisnotfixedinthespatialdirections.Therefore,theHamiltonianisstillgauge
n,0
invariantunderarestrictedsubsetoflocaltransformationsappliedtotheverticesofthespatiallattice,
Vn = eian. (7)
Inthisformalism,thegaugetransformationsaregenerated,likeanyothercontinuoussymmetry,by
operatorsGˆ thatcommutewiththeHamiltonianofthetheory,
n
[Hˆ, Gˆ ] = 0, (8)
n
defined,inthiscase,locallyforeachvertex.InthecaseoftheAbelian-HiggsHamiltonian(6),thegeneratorsGˆ
n
areexpressedas
Gˆn = å(Eˆn,k - Eˆn-kˆ,k) - Qˆn. (9)
k
ItiseasytocheckthatsuchoperatorcommuteswiththeHamiltonianforeveryvertexn.
TheeigenvaluesoftheoperatorsGˆ arecalledstaticchargesq ,taking,aswell,integervalues.TheHilbert
n n
spaceofthesystemisdividedintosectors,eachoneassociatedtoadifferentstaticchargeconfiguration,
= ⨁({q }), (10)
n
{q }
n
suchthat
Gˆ ∣y({q })ñ = q ∣y({q })ñ, "∣y({q })ñ Î ({q }). (11)
n n n n n n
SincetheHamiltoniancommuteswiththegeneratorsofthegaugetransformations,thedynamicscannot
mixdifferentsectors.Iftheinitialstatebelongstoacertainsector,thesystemwillremaininthesamesector
throughitstimeevolution.TheaboveequationisknownastheGauss’slaw,anditiscrucialforthestructureof
thephysicalstatesofthesystem.
Ingeneral,thetotalHilbertspaceofthesystemwouldbetheproductovertheverticesandlinksofthelattice
ofeachinfinitedimensionallocalHilbertspace.However,Gausslaw(9)imposesaconstraintontheallowed
stateswheretheHamiltonian(6)acts.Letusfirstconsiderthepure-gaugeKogut–SusskindHamiltonian,forthe
4
NewJ.Phys.19(2017)063038 DGonzález-Cuadraetal
Figure2.Thepure-gaugeexcitationsontopoftheemptystateconsistofclosedelectricfluxlines,createdbytheplaquetteinteraction
termintheHamiltonian(6).Sincetheplaquettetermisgauge-invariant,thesestatesaregaugeinvariantaswell.Thisisclearobserving
thattheGausslaw(9)isfulfilledoneachvertex,forcingtheclosedloopstructure.Inthefigure,positivevaluesoftheelectricfieldare
representedwitharrowspointingrightorupwards.
Figure3.Twoseparatedstaticchargesarejoined,inthestrongcouplinglimit,byanelectricfluxline.Ifthecouplingconstant
decreases,pure-gaugeloopswillappear.Ifsomelinkintheloopcoincideswiththeelectricfluxlinebetweenthecharges(inthe
oppositedirection),itwillresultinadeformationofthefluxline.
caseR=0,withinthezero-staticchargesector(q = 0"n).Inthestrongcouplinglimit(g 1),theground
n
stateofthesystemistheemptystate.Thisis,everylinkofthelatticeisaneigenstateoftheelectricfieldoperator
witheigenvalueequaltozero.Asthevalueofthecouplingconstantgdecreases,theemptystateisnolongerthe
groundstateofthesystem.Theplaquette-interactiontermcancreateexcitationscomposedofclosedelectric
fluxlines.Thegroundstate,andtherestofexcitedstates,willbesuperpositionofsuchloops,withanincreasing
numberofthemwhentheenergyofthesystemgrows(figure2).
Considernowagauge-invariantsectorwithnon-zerostaticchargesinsomevertices(figure3).Inthiscase,
theemptystateisnotthegroundstateofthesystemeveninthestrongcouplinglimit.Thereasonforthisisthat
Gausslaw(9)requiresanelectricfluxlinetoexistbetweeneverypairofstaticcharges,beingthegroundstatein
thestrongcouplinglimitcharacterizedbytheshortestofthosepaths.Ifthevalueofthecouplingconstantg
decreases,closedloopswillbeformedallaroundthelattice,deformingthefluxlinebetweenthestaticchargesif
theyshareacommonlinkwiththelatter(figure3).
Ifmatterispresentinthetheory,thefluxlineswillnotonlyfluctuatebutcanevenbreak.ForR ¹ 0,the
gauge-matterinteractiontermcancreatechargeexcitationsintwonearest-neighborvertices.Wecanfind,then,
statescharacterizedbyseparatedpairsofdynamicalchargesjoinedviafluctuatingfluxlines,whichwewillcall
mesons.Thedifferencewithrespecttothepure-gaugecaseisthat,now,thefluxlinescanbreak,resultingintwo
new—andshorter—meson-likestates(figure4).ThisphenomenonresemblesthebehaviorofQCD,where,due
totheconfinementmechanism,thefluxlinesbetweenaquark–antiquarkpaircanbreakthroughthecreationof
anewpairfromthevacuum(stringbreaking)[47].
Here,wehavedescribedsomebasicfeaturesofthislatticemodel.Thecompletephasediagramofthetheory
isdescribedinappendixA.2fordifferentdimensionsanddifferentrepresentationsofthesymmetrygroup.
5
NewJ.Phys.19(2017)063038 DGonzález-Cuadraetal
Figure4.Ifameson-likeexcitationiscreatedalongtheelectricfluxlineofanexistingmesonicstate,thelattercanbreak,givingbirthto
twoseparatedandsmallermesons.
3.Quantumsimulation
WeshallnowdescribeaquantumsimulationschemeforthelatticeAbelian-Higgstheoryusingultracold
bosonicatomstrappedinopticallattices.Thegoalistoimposecertainconditionsonthishighlycontrollable
atomicsystem,suchthattheHamiltonianthatdescribesitmaps,approximately,theHamiltonianunderstudy
(6).Boththeparametersappearinginthelatter,aswellasthedegreeofapproximation,canbecontrolled
experimentally.Thisallowstostudy,forinstance,thegroundstateofthismany-bodyquantumtheoryinthe
interactingregime,whichisahardtasktoperformusingstandardanalyticalornumericalcalculations.
Thesimulationproposalinvolvesthreemainsteps.First,startingfromthemostgeneralmulti-species
Hamiltonianthatdescribesultracoldbosons,theexperimentalrequirementsthatarenecessaryforthe
simulationwillbepresented.Afterthat,thetransformationsrequiredformappingthedegreesoffreedomofthe
atomicsystemtothoseoftheAbelian-Higgstheorywillbeintroduced.Finally,wewillseehowthedesired
Hamiltonianiseffectivelyobtained,apartfromcorrectionterms,afterincreasingoneoftheenergyscalesofthe
systemcomparedtotherest.Mostofthesecorrectionscanbemadeassmallasrequiredbychangingthe
experimentalparametersoftheatomicsystem,keepingthefreedomtomovethroughthephasespaceofthe
simulatedtheory,andbyincreasingthenumberofatomsusedinthesimulation.
3.1.Ultracoldatomsinopticallattices
3.1.1.AtomicHamiltonian
Ultracoldatomicgasesconsistofneutralatomstrappedandcooleddowntoalmostabsolutezerotemperature,
wherequantumeffectsplayasignificantrole.Theyrepresentoneofthemostrelevantplatformsforthestudyof
collectivequantumphenomenainregimesthatareeitherhardtoaccessexperimentally,orwherenumerical
simulationsdonotprovidesufficientlygoodresults.Inparticular,theso-calledopticallattices—structures
madeofcounter-propagatinglasers—canbepreparedinawaythatemulatesaperiodiclatticestructurewith
atomsboundtothevertices[5,7,9].Withintheselattices,interactionsamongtheatomscanbetunedinorderto
recreateHamiltonianmodelsdescribingmany-bodysystems,bothincondensedmatterandinhighenergy
physics.Inthiswork,wewillconsiderthemostgeneralmulti-speciesbosonicHamiltonian[9],
Hˆ = ååta,bbˆ† bˆ + å å Ua,b,d,gbˆ† bˆ† bˆ bˆ , (12)
i,j i,a j,b i,j,k,l i,a j,b k,d l,g
a,b i,j i,j,k,la,b,d,g
wherethelatinindicesdenotethedifferentsitesofanopticallattice,andthegreekindicesrepresentdifferent
bosonicspecies(eitherdifferentkindsofatomsoratomswithdifferentinternallevels).Theoperatorsbˆ and
i,a
bˆ† arebosoniccreationandannihilationoperators,respectively,fulfillingthecommutationrelations
i,a
[bˆ , bˆ† ] = d d . (13)
i,a j,b ij a,b
Theparametersta,bandUa,b,d,gareconstrainedbyconservationlawsandtheirrespectivesymmetries,and
i,j i,j,k,l
canbefine-tunedusingexperimentaltechniquessuchas(optical)Feshbachresonances[7,117–119].Thefirst
termin(12)correspondstoahoppingprocessofindividualatomsalongthelatticesites,whilethesecondisa
two-bodycollisionprocess.Forthelatter,theconservationofthetotalangularmomentumFimplies,in
particular,thatthefollowingconditionmustbefulfilledineachcollision,
m (a) + m (b) = m (d) + m (g), (14)
F F F F
wherem (a)representsthehyperfineangularmomentumstatefortheatomicspeciesα.
F
6
NewJ.Phys.19(2017)063038 DGonzález-Cuadraetal
Figure5.(a)Twosuperimposedopticallattices,orientedwitha45anglebetweentheirlinks,arerequiredtosimulateboththematter
andgaugedegreesoffreedom.Theverticesofonelattice(blueinthefigure)representtheverticesofthesimulatedone,whereasthe
verticesoftherotatedlattice(green)correspondwiththelinksofthelatter.The‘matter’latticeisfilledwithfourtypesofbosons(c),
twospeciespersite,alternatingonevenandoddvertices.Twoofthesebosonicspeciesrepresentdynamicalmatter(speciescandd),
andtheothertwoareauxiliarybosonsrequiredforthesimulation(specieseandf).The‘gauge’lattice,ontheotherhand,isfilledwith
twotypesofbosonsoneachsite(speciesaandb),withnodistinctionforevenandoddlinks.Thecharacteristicsoftheselatticesmust
beconfiguredsuchthatthereisnointeractionsbetweenbosonsfromdifferentsitesofthe‘gauge’lattice—using,forexample,deep
potentials—butallowingforinteractionsbetweenthemandthebosonsfromthenearest-neighborverticesofthe‘matter’lattice.This
isthecaseifthecorrespondingWannierfunctionshaveanon-vanishingintersection(b).
3.1.2.Experimentalrequirements
Oursimulationproposalfocusesonthe2+1dimensionalcase,whichisthefirst‘non-trivial’dimension,sinceit
containsplaquetteinteractions.Inparticular,weneedtwosuperimposedopticallatticestoperformalattice
gaugetheorysimulation,whoseminimacorrespondtotheverticesandlinksofthesimulatedlattice,respectively
(figure5(a)).Fillingandcombiningtwosuchlatticesispossibleinthetwo-dimensionalcase,however,it
becomesmorecomplicatedinthree-dimensions.Allthetheoreticalcalculationsarevalid,nevertheless,for
d + 1dimensions,withd 2.
TosimulatethecompleteAbelian-HiggsHamiltonian(6)weneedsixdifferentbosonicspecies(figure5(c)).
Twoofthem,aandb,areplacedonthelinksofthesimulatedlatticeandrepresentthegaugedegreesoffreedom.
Anotherpairofbosonssimulatesthescalarfieldsonthevertices(dynamicalmatter),onespeciesontheodd
vertices,c,andtheotheroneontheevenones,d.Thelasttwospecies,eandf,aredistributed,again,onoddand
evenvertices,respectively,actingasauxiliaryparticlesrequiredtoobtaintheplaquetteinteractionsinan
effectiveway,aswewillsee.Eachpairofbosonicspeciescorrespondstothesametypeofatom,buttheirinternal
leveldifferinthevalueofthehyperfineangularmomentum,m .Wewilldenotebothtypesofdynamicalbosons
F
withη,andbothauxiliaryoneswithχ,inthosesituationswhereadistinctionbetweenthehyperfineangular
momentumlevelisnotimportant.
Dyn.η Aux.χ
Odd c e
Even d f
3.2.PrimitiveHamiltonian
Fordimensionsd + 1,withd > 1,theHamiltoniansthatdescribelatticegaugetheories,suchastheAbelian-
Higgsone(6),includeplaquette-typeinteractionsmadeoutoftheproductoffourunitaryoperators(figure1).
Suchfour-bodyinteractionsarenotfoundintheultracoldatomicHamiltonian.Inordertosimulatethem,we
havetoobtainthesetypeoftermseffectively[70,71],aswewillexplaininlatersections.
WeshallcallprimitiveHamiltoniantheonefromwhichthedesiredAbelian-HiggsHamiltoniancanbe
obtainedeffectively,actingonlyonalow-energysector.Ithastheform
Hˆ = låNˆc(Nˆc- 1) +å[cˆ†Uˆ† cˆ + h.c.] + måEˆ2 + m¢åQˆ2+¢å[fˆ†Uˆ† fˆ + h.c.].
n n n n,k n+kˆ n,k n n n,k n+kˆ
n n,k n,k n n,k
(15)
7
NewJ.Phys.19(2017)063038 DGonzález-Cuadraetal
Thefirstrowcontainstheoperatorscorrespondingtoauxiliarybosonslivingontheverticesofthelattice.cˆ†
n
andcˆ arethebosoniccreationandannihilationoperators,respectively,andNˆc = cˆ†cˆ isthecorresponding
n n n n
numberoperator.Thesecondrowcontainsallthetermsof(6)exceptfortheplaquetteinteraction.Theprimitive
HamiltonianisinvariantaswellunderU(1)localtransformationsappliedontheverticesofthelattice.
WewillnowfocusonbringingtheatomicHamiltoniantotheprimitive(intermediate)form(15).Although
onlyanapproximateHamiltoniancanbeobtained,thelevelofapproximationcanbecontrolledbyusinga
differentnumberofatomsinthesimulation.
3.3.Operatortransformations
Thefirststeptowardsaquantumsimulationistoconstructaone-to-onemappingbetweenthedegreesof
freedomofboththesimulatingandthesimulatedsystems.Here,thisisachievedbydefiningtheoperatorsthat
appearintheAbelian-HiggsHamiltonian(6)intermsofbosoniccreationandannihilationoperators
correspondingtothedifferentatomicspecies.Forafinitenumberofatomstrappedontheverticesandlinksof
theopticallattice,thecorrespondenceisnotexact,inthesensethatthedefinedoperatorswillactonlyona
truncatedHilbertspace.However,theapproximationwillimprovewhenthenumberofatomsincreases,asthe
connectionbetweenbothsystemsbecomesexactintheinfinitenumberofatomslimit.
Ontheverticesofthelattice(bothevenandodds),weintroducetheoperatorsQˆ ,fˆ andfˆ†usingthe
n n n
second-quantizedoperatorshˆ andhˆ†forthedynamicalbosons,
n n
hˆ = fˆ (N + Qˆ )1 2, hˆ†= (N + Qˆ )1 2fˆ† (16)
n n 0,v n n 0,v n n
and
Qˆ = hˆ†hˆ - N , (17)
n n n 0,v
whereN isthedensityofηbosons.Withtheserelations,boththecanonicalcommutationrelationsforthe
0,v
bosonicoperatorsandthecommutationrelations(4)arefulfilled.Accordingtothisdefinition,theoperatorQˆ
n
isboundedfrombelowby-N .Forthisreason,itisnotexactlyequivalenttothedynamicalchargeoperator
0,v
thatappearsin(6),however,wecanthinkaboutitasthelatteractingonatruncatedHilbertspace—theone
spannedbythebasis∣mñwithm Î Ç[-N , ¥)—whereitisequivalenttothedynamicalchargeoperator.
0,v
Forthisreason,weusethesamenotationforboth,understanding,inthefollowing,thatwearereferringtothe
operatoractingonthetruncatedspace.
AnotherproblemconcerningthefinitenessofN isthat,byimposingthecommutationrelations(4),hˆ
0,l n
andhˆ†cannotbeunitary,whichalsomeansthattheyarenottheexponentialofaself-adjointphasejˆ ,
n n
fˆn = e-ijˆn.Thisisrelatedtothequantumphaseoperatorproblem[120–124],andliesinthefactthatQˆnis
boundedfrombelow.Aunitaryoperatoriswell-definedonlyinthelimitN ¥,suchthatthecharge
0,v
operatorisnolongerbounded.
Weareworkingwithalarge,butfinite,numberofatomsN oneachvertex.Thereasonitisstillfine,froma
0,v
physicalpointofview,tousethesedefinitions—althoughtheyarenotformallycorrect—isthatinallthe
interactiontermsoftheHamiltonianthebosonicoperatorsappearinpairs,correspondingtonearest-neighbor
vertices,hˆ†hˆ .Therefore,onlyphasedifferencesbetweendifferentverticesarerelevant.Thephasedifference
n n+kˆ
isawell-definedquantity,sinceitiscanonicallyconjugatetoanumberoperator,Nˆ = Nˆc - Nˆd,whichisnot
boundedfrombelow.
Theoperatorsassociatedtothegaugefields,Eˆ andUˆ canbeobtainedfromthebosonicoperatorsonthe
n,k n,k
linksifwefirstrepresenttheminasimilarwayastheatomicoperatorsonthevertices,
aˆ = Uˆa ⎜⎛N0,l + Eˆa ⎟⎞1 2, bˆ = Uˆb ⎜⎛N0,l + Eˆb ⎟⎞1 2, (18)
n,k n,k⎝ n,k⎠ n,k n,k⎝ n,k⎠
2 2
whereUˆa andUˆb areloweringoperators,and
n,k n,k
Eˆa = aˆ† aˆ - N0,l, Eˆb = bˆ† bˆ - N0,l. (19)
n,k n,k n,k 2 n,k n,k n,k 2
Again,ifthecommutationrelations(1)arefulfilled,thecanonicalrelationsforthebosonicoperatorswillbe
satisfied.
Thetotalnumberofbosonsoneachlink,N isaconservedquantity,
0,l
N = aˆ† aˆ + bˆ† bˆ , (20)
0,l n,k n,k n,k n,k
since,asweshallsee,onlyproductsofbosonicoperatorsoftheformaˆ† bˆ andbˆ† aˆ willappearinthe
n,k n,k n,k n,k
Hamiltonian.ThisimpliesthatEˆa = -Eˆb º Eˆ .Weusethelatterastheelectricfieldoperatoronthelink
n,k n,k n,k
(n, k),whichcanalsobeexpressedas
8
NewJ.Phys.19(2017)063038 DGonzález-Cuadraetal
E = 1(aˆ† aˆ - bˆ† bˆ ). (21)
n,k 2 n,k n,k n,k n,k
Weconstructtheunitaryoperatorsactingonthelinksas
Uˆ† = Uˆa†Uˆb , (22)
n,k n,k n,k
satisfyingthecorrectcommutationrelations(1)withtheelectricfield(21).Notethat,inthiscase,theoperator
E isnotboundedfrombelow.Uˆ andUˆ† are,therefore,well-definedunitaryoperators,althoughtheyonly
n,k n,k n,k
actonatruncatedHilbertspacethatgrowswithN .
0,l
Finally,theproductoftwobosonicoperatorsonthelinkscanbewrittenas
aˆ† bˆ =Uˆ† ⎜⎛N0,l(N0,l + 2) - Eˆ (Eˆ + 1)⎟⎞1 2,
n,k n,k n,k⎝ 4 n,k n,k ⎠
bˆ† aˆ =⎜⎛N0,l(N0,l + 2) - Eˆ (Eˆ + 1)⎟⎞1 2Uˆ , (23)
n,k n,k ⎝ n,k n,k ⎠ n,k
4
whereweusedthepropertyUˆ f(Eˆ) = f(Eˆ + 1)Uˆ (seeappendixC).Inthefollowing,wewillassumethis
property—similarlyfortheoperatorsonthevertices,fˆ f(Qˆ) = f(Qˆ + 1)fˆ—todealwiththesenon-
commutingoperators.
Inordertosimplifythenotation,wedefinethenon-unitaryoperators
⎛ ⎞1 2
Fˆ† º⎜1 + 1 Qˆ ⎟ fˆ†,
n ⎝ N n⎠ n
0,v
⎛ ⎞1 2
ˆ† º⎜1 - 4 (Eˆ2 - Eˆ )⎟ Uˆ† , (24)
n,k ⎝ N (N + 2) n,k n,k ⎠ n,k
0,l 0,l
whichbecomethedesiredunitaryones,fˆ†andUˆ†,inthelimitsN ¥andN ¥,respectively.The
n n 0,v 0,l
connectionwiththeatomicoperatorsissummarizedinthefollowingrelations,
hˆ† aˆ† bˆ
Fˆ† = n , ˆ† = n,k n,k ,
n n,k
N N (N + 2) 4
0,v 0,l 0,l
hˆ bˆ† aˆ
Fˆ = n , ˆ = n,k n,k . (25)
n n,k
N N (N + 2) 4
0,v 0,l 0,l
3.4.Gauge-invariantinteractions
Localgaugeinvarianceisnotafundamentalsymmetryinasystemofultracoldatoms.Itisessential,however,for
thedescriptionoftheinteractionspresentinhighenergyphysics,aswehaveseen.Ifoneaimstocorrectly
describethelatter,gaugesymmetrymustbeimposedonthesimulatingsystem.Thiscanbedoneeitherina
digital[91]orinananalogsimulationframework.Forthelatter,therearetwodistinctwaystoachievethis[71],
onewheregaugeinvarianceisobtainedeffectively,asanemerging,lowenergysymmetry[73,74,76],and
anotherwhereitismapped,exactly,toafundamentalsymmetryofthesystem—suchastheconservationof
hyperfineangularmomentuminatomiccollisions.Inthiscase,asopposedtoaneffectivegaugesymmetry,
gaugeinvarianceisexact,makingthesimulationmorerobustagainstexperimentalimperfections.Usingthe
secondapproach,quantumsimulationsofbothabelianandnon-abelianlatticegaugetheorieshavebeen
proposed[70,93].Here,wewillemployittosimulatetheU(1)gaugeinvarianceoftheAbelian-Higgsmodel.
Inordertoobtainthecorrect‘gauge-invariant’interactions,thehyperfineangularmomentaofthesix
bosonicspeciesmustfulfillcertainconditions(figure6),
m (a) - m (b) = m (c) - m (d) = m (e) - m (f) º Dm. (26)
F F F F F F
Sinceonlycollisionprocessesthatconservethetotalangularmomentumareallowed,thisconditionselectsthe
typeoftermsthatappearintheatomicHamiltonian.Consider,forinstance,theinteractionsbetweena
dynamicalbosononavertexandagaugebosonononeofitsnearest-neighborlinks.Theconservationof
hyperfineangularmomentumallowsbothspecies-changingcollisions(figure7(a)),
dˆn†aˆn†,kbˆn,kcˆn+kˆ + cˆn†+kˆbˆn†+kˆ,kaˆn+kˆ,kdˆn+2kˆ, (27)
9
Description:30 June 2017. Original content from this work may be used under the terms of the Creative experimental complexity. Any attempt to simulate theses theories must take these facts into for all n, and j˜ refers to the complete set of jn0. , for alln0. In the previous expression, the action was split