Table Of ContentOperational
Calculus and
Related Topics
ANALYTICAL METHODS AND SPECIAL FUNCTIONS
An International Series of Monographs in Mathematics
FOUNDING EDITOR: A.P. Prudnikov (Russia)
SERIES EDITORS: C.F. Dunkl (USA), H.-J. Glaeske (Germany) and M. Saigo (Japan)
(cid:3)
∫∫
Volume 1
Series of Faber Polynomials, P.K. Suetin
Volume 2
Inverse Spectral Problems for Linear Differential Operators
and Their Applications, V.A. Yurko
Volume 3
Orthogonal Polynomials in Two Variables, P.K. Suetin
Volume 4
Fourier Transforms and Approximations, A.M. Sedletskii
Volume 5
Hypersingular Integrals and Their Applications, S. Samko
Volume 6
Methods of the Theory of Generalized Functions, V.S. Vladimirov
Volume 7
Distributions, Integral Transforms and Applications, W. Kierat
and U. Sztaba
Volume 8
Bessel Functions and Their Applications, B. Korenev
Volume 9
H-Transforms: Theory and Applications, A.A. Kilbas and M. Saigo
Volume 10
Operational Calculus and Related Topics, H.-J. Glaeske,
A.P. Prudnikov, and K.A. Skórnik
Operational
Calculus and
Related Topics
H.-J. Glaeske
Friedrich-Schiller University
Jena, Germany
A.P. Prudnikov
(Deceased)
K.A. Skòrnik
Institute of Mathematics
Polish Academy of Sciences
Katowice, Poland
Boca Raton London New York
Chapman & Hall/CRC is an imprint of the
Taylor & Francis Group, an informa business
Chapman & Hall/CRC
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742
© 2006 by Taylor and Francis Group, LLC
Chapman & Hall/CRC is an imprint of Taylor & Francis Group, an Informa business
No claim to original U.S. Government works
Printed in the United States of America on acid-free paper
10 9 8 7 6 5 4 3 2 1
International Standard Book Number-10: 1-58488-649-8 (Hardcover)
International Standard Book Number-13: 978-1-58488-649-5 (Hardcover)
Library of Congress Card Number 2006045622
This book contains information obtained from authentic and highly regarded sources. Reprinted material is quoted
with permission, and sources are indicated. A wide variety of references are listed. Reasonable efforts have been made
to publish reliable data and information, but the author and the publisher cannot assume responsibility for the valid-
ity of all materials or for the consequences of their use.
No part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical,
or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any
information storage or retrieval system, without written permission from the publishers.
For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://
www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC) 222 Rosewood Drive, Danvers, MA
01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of
users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has
been arranged.
Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for
identification and explanation without intent to infringe.
Library of Congress Cataloging-in-Publication Data
Glaeske, Hans-Jürgen.
Operational calculus and related topics / Hans-Jürgen Glaeske, Anatoly P. Prudnikov, Krystyna
A. Skórnik.
p. cm. -- (Analytical methods and special functions ; 10)
ISBN 1-58488-649-8 (alk. paper)
1. Calculus, Operational. 2. Transformations (Mathematics) 3. Theory of distributions (Func-
tional analysis) I. Prudnikov, A. P. (Anatolii Platonovich) II. Skórnik, Krystyna. III. Title. IV. Series.
QA432.G56 2006
515’.72--dc22 2006045622
Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com
and the CRC Press Web site at
http://www.crcpress.com
In memory of
A. P. Prudnikov
January 14, 1927 — January 10, 1999
Contents
Preface xi
List of Symbols xv
1 Integral Transforms 1
1.1 Introduction to Operational Calculus . . . . . . . . . . . . . . . . . . . . . 1
1.2 Integral Transforms – Introductory Remarks . . . . . . . . . . . . . . . . . 5
1.3 The Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3.1 Definition and Basic Properties . . . . . . . . . . . . . . . . . . . . . 8
1.3.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3.3 Operational Properties . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.3.4 The Inversion Formula . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.3.5 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.4 The Laplace Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.4.1 Definition and Basic Properties . . . . . . . . . . . . . . . . . . . . . 27
1.4.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
1.4.3 Operational Properties . . . . . . . . . . . . . . . . . . . . . . . . . . 33
1.4.4 The Complex Inversion Formula . . . . . . . . . . . . . . . . . . . . 37
1.4.5 Inversion Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
1.4.6 Asymptotic Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
1.4.7 Remarks on the Bilateral Laplace Transform . . . . . . . . . . . . . 47
1.4.8 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
1.5 The Mellin Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
1.5.1 Definition and Basic Properties . . . . . . . . . . . . . . . . . . . . . 55
1.5.2 Operational Properties . . . . . . . . . . . . . . . . . . . . . . . . . . 58
1.5.3 The Complex Inversion Formula . . . . . . . . . . . . . . . . . . . . 62
1.5.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
1.6 The Stieltjes Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
1.6.1 Definition and Basic Properties . . . . . . . . . . . . . . . . . . . . . 67
1.6.2 Operational Properties . . . . . . . . . . . . . . . . . . . . . . . . . . 70
1.6.3 Asymptotics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
1.6.4 Inversion and Application . . . . . . . . . . . . . . . . . . . . . . . . 75
viii
1.7 The Hilbert Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
1.7.1 Definition and Basic Properties . . . . . . . . . . . . . . . . . . . . . 78
1.7.2 Operational Properties . . . . . . . . . . . . . . . . . . . . . . . . . . 81
1.7.3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
1.8 Bessel Transforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
1.8.1 The Hankel Transform . . . . . . . . . . . . . . . . . . . . . . . . . . 85
1.8.2 The Meijer (K-) Transform . . . . . . . . . . . . . . . . . . . . . . . 93
1.8.3 The Kontorovich–Lebedev Transform . . . . . . . . . . . . . . . . . 100
1.8.4 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
1.9 The Mehler–Fock Transform . . . . . . . . . . . . . . . . . . . . . . . . . . 107
1.10 Finite Integral Transforms . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
1.10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
1.10.2 The Chebyshev Transform . . . . . . . . . . . . . . . . . . . . . . . . 116
1.10.3 The Legendre Transform. . . . . . . . . . . . . . . . . . . . . . . . . 122
1.10.4 The Gegenbauer Transform . . . . . . . . . . . . . . . . . . . . . . . 131
1.10.5 The Jacobi Transform . . . . . . . . . . . . . . . . . . . . . . . . . . 137
1.10.6 The Laguerre Transform . . . . . . . . . . . . . . . . . . . . . . . . . 144
1.10.7 The Hermite Transform . . . . . . . . . . . . . . . . . . . . . . . . . 153
2 Operational Calculus 163
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
2.2 Titchmarsh’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
2.3 Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
2.3.1 Ring of Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
2.3.2 The Field of Operators. . . . . . . . . . . . . . . . . . . . . . . . . . 185
2.3.3 Finite Parts of Divergent Integrals . . . . . . . . . . . . . . . . . . . 190
2.3.4 Rational Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
2.3.5 Laplace Transformable Operators . . . . . . . . . . . . . . . . . . . . 205
2.3.6 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
2.3.7 Periodic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
2.4 Bases of the Operator Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 219
2.4.1 Sequences and Series of Operators . . . . . . . . . . . . . . . . . . . 219
2.4.2 Operator Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
2.4.3 The Derivative of an Operator Function . . . . . . . . . . . . . . . . 229
2.4.4 Properties of the Continuous Derivative of an Operator Function . . 229
2.4.5 The Integral of an Operator Function . . . . . . . . . . . . . . . . . 232
2.5 Operators Reducible to Functions . . . . . . . . . . . . . . . . . . . . . . . 236
2.5.1 Regular Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
ix
2.5.2 The Realization of Some Operators . . . . . . . . . . . . . . . . . . . 239
2.5.3 Efros Transforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
2.6 Application of Operational Calculus . . . . . . . . . . . . . . . . . . . . . . 247
2.6.1 Ordinary Differential Equations . . . . . . . . . . . . . . . . . . . . . 247
2.6.2 Partial Differential Equations . . . . . . . . . . . . . . . . . . . . . . 258
3 Generalized Functions 271
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
3.2 Generalized Functions — Functional Approach . . . . . . . . . . . . . . . . 272
3.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272
3.2.2 Distributions of One Variable . . . . . . . . . . . . . . . . . . . . . . 274
3.2.3 Distributional Convergence . . . . . . . . . . . . . . . . . . . . . . . 279
3.2.4 Algebraic Operations on Distributions . . . . . . . . . . . . . . . . . 280
3.3 Generalized Functions — Sequential Approach . . . . . . . . . . . . . . . . 287
3.3.1 The Identification Principle . . . . . . . . . . . . . . . . . . . . . . . 287
3.3.2 Fundamental Sequences . . . . . . . . . . . . . . . . . . . . . . . . . 289
3.3.3 Definition of Distributions . . . . . . . . . . . . . . . . . . . . . . . . 297
3.3.4 Operations with Distributions . . . . . . . . . . . . . . . . . . . . . . 300
3.3.5 Regular Operations. . . . . . . . . . . . . . . . . . . . . . . . . . . . 303
3.4 Delta Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
3.4.1 Definition and Properties . . . . . . . . . . . . . . . . . . . . . . . . 311
3.4.2 Distributions as a Generalization of Continuous Functions . . . . . . 317
3.4.3 Distributions as a Generalization of Locally Integrable Functions . . 320
3.4.4 Remarks about Distributional Derivatives . . . . . . . . . . . . . . . 322
3.4.5 Functions with Poles . . . . . . . . . . . . . . . . . . . . . . . . . . . 325
3.4.6 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326
3.5 Convergent Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332
3.5.1 Sequences of Distributions . . . . . . . . . . . . . . . . . . . . . . . . 332
3.5.2 Convergence and Regular Operations. . . . . . . . . . . . . . . . . . 339
3.5.3 Distributionally Convergent Sequences of Smooth Functions . . . . . 341
3.5.4 ConvolutionofDistributionwithaSmoothFunctionofBoundedSup-
port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344
3.5.5 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346
3.6 Local Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347
3.6.1 Inner Product of Two Functions . . . . . . . . . . . . . . . . . . . . 347
3.6.2 Distributions of Finite Order . . . . . . . . . . . . . . . . . . . . . . 350
3.6.3 The Value of a Distribution at a Point . . . . . . . . . . . . . . . . . 352
3.6.4 The Value of a Distribution at Infinity . . . . . . . . . . . . . . . . . 355
Description:Even though the theories of operational calculus and integral transforms are centuries old, these topics are constantly developing, due to their use in the fields of mathematics, physics, and electrical and radio engineering. Operational Calculus and Related Topics highlights the classical methods a