Table Of ContentClemson University
TigerPrints
All Dissertations Dissertations
12-2015
MICRORNA-MEDIATED PLANT
DEVELOPMENT AND RESPONSE TO
ENVIRONMENTAL STRESS IN PERENNIAL
GRASSES
Shuangrong Yuan
Clemson University, [email protected]
Follow this and additional works at:http://tigerprints.clemson.edu/all_dissertations
Part of theGenetics Commons
Recommended Citation
Yuan, Shuangrong, "MICRORNA-MEDIATED PLANT DEVELOPMENT AND RESPONSE TO ENVIRONMENTAL STRESS
IN PERENNIAL GRASSES" (2015).All Dissertations.Paper 1599.
This Dissertation is brought to you for free and open access by the Dissertations at TigerPrints. It has been accepted for inclusion in All Dissertations by
an authorized administrator of TigerPrints. For more information, please [email protected].
MICRORNA-MEDIATED PLANT DEVELOPMENT AND RESPONSE
TO ENVIRONMENTAL STRESS IN PERENNIAL GRASSES
_____________________________________________________
A Dissertation
Presented to
the Graduate School of
Clemson University
_____________________________________________________
In Partial Fulfillment
of the Requirements for the Degree
Doctor of Philosophy
Genetics
____________________________________________________
by
Shuangrong Yuan
December 2015
____________________________________________________
Accepted by:
Dr. Hong Luo, Committee Chair
Dr. William R. Marcotte, Jr.
Dr. Julia Frugoli
Dr. Liangjiang Wang
ABSTRACT
World population will pass nine billion by 2050, while the agricultural land area will
not increase dramatically in the coming decades. To meet the ever-increasing food
demand, genetically engineered crops have been rapidly adopted for crop productivity.
MicroRNAs have become increasingly attractive as targets in crop genetic modification
due to their regulatory role in fine-tuning many essential biological processes. My
research explores the potentials of microRNA528 (miR528) and miR396 for use in
genetic modifications of the important agronomic traits of plant development, abiotic
stress response, and/or flowering time control in an economically and environmentally
important perennial monocot species, creeping bentgrass (Agrostis stolonifera).
MiR528 is a conserved monocot-specific small RNA which is involved in multiple
stress responses, however, experimental functional studies are lacking. In this study, we
generated transgenic creeping bentgrass overexpressing a rice miRNA, Osa-miR528.
Transgenic plants show altered plant development and enhanced salt and nitrogen (N)
deficiency tolerance. The developmental changes include shortened internodes, increased
tillers, and relatively upright growth. Enhanced salt stress tolerance is associated with
improved water, chlorophyll, and potassium retention, cell membrane integrity, increased
proline content, CATALASE activity, and reduced ASCORBIC ACID OXIDASE
(AAO) activity; while improved N deficiency is associated with increased biomass, total
N accumulation, chlorophyll synthesis, nitrite reductase activity, and reduced AAO
activity. Molecular analysis identified AAO and COPPER ION BINDING1 as putative
ii(cid:3)
(cid:3)
(cid:3)
(cid:3)
targets of miR528 in creeping bentgrass. Both putative targets respond to salt stress and
N deficiency.
The conserved miR396 is involved in plant vegetative and reproductive development
and various environmental stress responses through targeting Growth Regulating Factor
(GRF) transcription factor genes. In this study, we generated transgenic creeping
bentgrass overexpressing a rice miRNA, Osa-miR396c. The transgenic plants exhibit
altered development in both vegetative and reproductive growth, elimination of
vernalization requirement, and enhanced salt stress tolerance. The altered plant
development includes less shoot and root biomass, shorter internodes, smaller leaf area,
fewer leaf veins and epidermal cells, and defects in filament elongation, anther
dehiscence, and pollen viability. The enhanced salt tolerance is associated with improved
water and chlorophyll retention, cell membrane integrity, and sodium ion exclusion
during salt stress. The elimination of vernalization requirement is associated with the
regulation of key genes VRN1, VRN2, and VRN3 in the vernalization pathway. Four
putative targets AsGRF3-6 were identified in creeping bentgrass. These targets respond to
high salinity, long-day photoperiod, and prolonged cold exposure. RNA-seq analysis
shows that differentially expressed genes are involved in cell division, floral organ
development, vegetative to reproductive transition, histone modification, oxidation
reduction, environmental stress response, etc.
The study established the molecular pathways of miR528- and miR396-mediated
plant salt stress and/or N deficiency tolerance in creeping bentgrass. It provides insight
iii(cid:3)
(cid:3)
(cid:3)
(cid:3)
into miRNA-mediated regulatory network in plant vegetative and reproductive
development, abiotic stress response and flowering time control.
iv(cid:3)
(cid:3)
TABLE OF CONTENTS
Page
TITLE PAGE .................................................................................................................................. i
ABSTRACT .................................................................................................................................... ii
TABLE OF CONTENTS ................................................................................................................ v
LIST OF TABLES ......................................................................................................................... vi
LIST OF FIGURES ........................................................................................................................ vi
CHAPTER I - LITERATURE REVIEW OF NEGATIVE REGULATORS OF MESSENGER
RNA AND THE ROLE OF MICRORNA FOR PLANT GENETIC ENGINEERING .................. 1
1.1 Introduction ........................................................................................................................... 1
1.2 Biogenesis and mechanisms of negative regulators of mRNA ............................................. 2
1.2.1 Biogenesis and mechanisms of miRNA ......................................................................... 4
1.2.2 Biogenesis and mechanisms of siRNA ........................................................................... 5
1.3 Roles of miRNA in plant genetic modification ..................................................................... 6
1.3.1 MiRNA-mediated plant organ development for plant genetic engineering ................... 7
1.3.2 MiRNA-mediated plant response to abiotic stress for plant genetic engineering ........ 19
1.3.3 MiRNA-mediated plant response to biotic stress for plant genetic engineering .......... 28
1.4 MiRNA-based gene silencing strategies in plant genetic modification ............................... 32
1.5 Concluding remarks............................................................................................................. 33
1.6 Acknowledgements ............................................................................................................. 33
CHAPTER II - CONSTITUTIVE EXPRESSION OF RICE MICRORNA528 ALTERS PLANT
DEVELOPMENT AND ENHANCES TOLERANCE TO SALINITY STRESS AND
NITROGEN STARVATION IN CREEPING BENTGRASS ...................................................... 57
2.1 Introduction ......................................................................................................................... 58
2.2 Results ................................................................................................................................. 62
2.3 Discussion ........................................................................................................................... 83
2.4 Materials and methods ......................................................................................................... 91
2.5 Acknowledgements ............................................................................................................. 97
CHAPTER III - CONSTITUTIVE EXPRESSION OF MIR396C ALTERS PLANT
DEVELOPMENT AND ENHANCES SALT STRESS TOLERANCE IN TRANSGENIC
CREEPING BENTGRASS ......................................................................................................... 109
v(cid:3)
T able of Contents (Continued)
Page
3.1 Introduction ....................................................................................................................... 110
3.2 Results ............................................................................................................................... 114
3.3 Discussion ......................................................................................................................... 129
3.4 Materials and methods ....................................................................................................... 134
3.5 Acknowledgement ............................................................................................................. 138
CHAPTER IV - MIR396 IS INVOLVED IN FLOWER DEVELOPMENT AND PLANT
RESPONSE TO VERNALIZATION ......................................................................................... 147
4.1 Introduction ....................................................................................................................... 148
4.2 Results ............................................................................................................................... 152
4.3 Discussion ......................................................................................................................... 171
4.4 Materials and methods ....................................................................................................... 180
4.5 Acknowledgements ........................................................................................................... 182
CHAPTER V - CONCLUSION AND FUTURE DIRECTIONS ............................................... 193
APPENDIX A- SUPPLEMENTARY FIGURES ....................................................................... 198
LIST OF TABLES
Table 1.1 MiRNA/target module modification for improved agronomic traits. ............................. 9
LIST OF FIGURES
Figure 1.1 Biogenesis and mechanisms of negative regulators of mRNA in plants. ...................... 3
Figure 1.2 Summary of miRNA-target pairs-mediated plant organ development including both
vegetative and reproductive stages. ............................................................................................... 10
Figure 1.3 Summary of modifications of miRNA-target pairs with enhanced abiotic stress
resistance. ...................................................................................................................................... 24
vi(cid:3)
List of Figures (Continued)
Page
Figure 1.4 Regulatory roles of miRNAs, miRNA-target pairs, and key genes in miRNA
biogenesis pathway in response to biotic stress resistance. ........................................................... 29
Figure 2.1 Stem-loop RT-qPCR analyses of miR528 expression profiles in response to salt,
drought, and N deficiency in WT creeping bentgrass leaves. ....................................................... 62
Figure 2.2 Generation and molecular analysis of transgenic (TG) creeping bentgrass
overexpressing Osa-miR528. ......................................................................................................... 63
Figure 2.3 Plant tillering and development. .................................................................................. 66
Figure 2.4 Responses of WT controls and transgenics to salinity treatment. ................................ 68
Figure 2.5 Na+ and K+ content in WT and TG plants under normal and salt stress conditions. .... 70
Figure 2.6 Expression levels of AsHAK5 in WT and TG plants by semi-quantitative RT-PCR
analysis. ......................................................................................................................................... 73
Figure 2.7 Responses of WT and TG plants under different concentrations of N solutions. ........ 74
Figure 2.8 AsNiR gene expression analysis and NiR enzyme assays in WT and TG plants. ....... 77
Figure 2.9 Putative miR528 targets identification in creeping bentgrass. ..................................... 78
Figure 2.10 Expression patterns of the two miR528 putative targets under salt and N deficiency
conditions through real-time RT-PCR analysis. ............................................................................ 80
Figure 2.11 Expression levels of the abiotic stress-related miRNAs and AsNAC60 in WT controls
and Osa-miR528 transgenic lines. ................................................................................................. 81
Figure 2.12 A hypothetical model of the molecular mechanisms of miR528-mediated plant
abiotic stress response in creeping bentgrass. ............................................................................... 90
Figure 3.1 Expression profiles of miR396c in response to salt stress. ........................................ 114
vii(cid:3)
L ist if Figures (Continued)
Page
Figure 3.2 Generation of transgenic creeping bentgrass constitutively expressing Osa-miR396c.
..................................................................................................................................................... 115
Figure 3.3 Plant tillering and development. ................................................................................ 118
Figure 3.4 Histological analysis of leaf and stem of WT and TG plants. .................................... 119
Figure 3.5 Responses of WT plants and transgenic lines under salt stress test. .......................... 122
Figure 3.6 Na+ and K+ relative contents. ..................................................................................... 123
Figure 3.7 Semi-quantitative RT-PCR analysis of the expression levels of AsSOS1 in WT and two
transgenic lines under normal growth conditions. AsUBQ5 was used as the reference gene. ..... 123
Figure 3.8 Identification of putative miR396ctargets in creeping bentgrass. ............................ 123
Figure 3.9 Expression profiles of miR396c putative targets in response to salt stress. ............... 125
Figure 3.10 GO enrichment analysis. .......................................................................................... 126
Figure 3.11 Differential expression of leaf development- and environmental stress response-
related transcripts. ....................................................................................................................... 128
Figure 3.12 Semi-quantitative RT-PCR analysis ........................................................................ 128
Figure 3.13 Hypothetical model of the signaling pathway of miR396-mediated salt stress
tolerance. ..................................................................................................................................... 133
Figure 4.1 Osa-miR396c transgenic creeping bentgrass flowers without vernalization. ............. 154
Figure 4.2 Flower development between WT and TG plants. ..................................................... 156
Figure 4.3 Expression profiles of miR396c under SD-LD, and SD-cold-LD conditions. ........... 156
Figure 4.4 Phylogenetic analyses of VRN1, VRN2, and VRN3 proteins and sequence alignment
of their conserved domains. ......................................................................................................... 159
viii(cid:3)
L ist of Figures (Continued)
Page
Figure 4.5 Expression profiles of AsVRN1, AsVRN2, and AsVRN3 in SD-LD and SD-cold-LD
conditions. ................................................................................................................................... 162
Figure 4.6 Expression levels of methyltransferases AsATX2, AsEZ1a, and AsTrx1 in WT and TG
plants under SD conditions. ......................................................................................................... 164
Figure 4.7 Expression profiles of the putative miR396c targets AsGRF3, AsGRF4, AsGRF5, and
AsGRF6 in SD-LD and SD-cold-LD conditions. ........................................................................ 166
Figure 4.8 GO enrichment analysis. ............................................................................................ 168
Figure 4.9 Differential expression of transcription factor genes at 3-week LD induction. ......... 169
Figure 4.10 Differential expression of flower development and chromatin modification related
genes. ........................................................................................................................................... 171
Figure A-1 Development of WT and TG plants. ......................................................................... 198
Figure A-2 Biomass measurement in WT and TG plants. .......................................................... 199
Figure A-3 Antioxidant enzyme activity assay under normal and 200 mM NaCl conditions in WT
and TG plants. ............................................................................................................................. 199
Figure A-4 WT plants exhibit wilting leaf tips compared to three transgenic lines. ................... 200
Figure A-5 Biomass accumulation of WT and Osa-miR528TG plants in response to different
concentrations of N solutions. ..................................................................................................... 200
Figure A-6 AAO activity measurement under normal and N deficiency conditions. ................. 201
Figure A-7 Differential expression of genes in TG vs. WT plants. ............................................. 201
Figure A-8 Vernalized (+V) and non-vernalized (-V) transgenic C. flexuosa overexpressing
miR396 under 2-week LD induction. .......................................................................................... 202
ix(cid:3)
Description:Molecular analysis identified AAO and COPPER ION BINDING1 as putative into miRNA-mediated regulatory network in plant vegetative and reproductive . 1.3.1 MiRNA-mediated plant organ development for plant genetic observed in transgenic rice, maize and switchgrass (Xie, et al., 2012; Fu,