Table Of Contentcrossmark
THEJOURNALOFBIOLOGICALCHEMISTRY VOL.292,NO.7,pp.2624–2636,February17,2017
©2017byTheAmericanSocietyforBiochemistryandMolecularBiology,Inc. PublishedintheU.S.A.
Inhibition of Mammalian Glycoprotein YKL-40
IDENTIFICATIONOFTHEPHYSIOLOGICALLIGAND*□S
Receivedforpublication,October26,2016,andinrevisedform,December22,2016 Published,JBCPapersinPress,January4,2017,DOI10.1074/jbc.M116.764985
AbhishekA.KognoleandX ChristinaM.Payne1
FromtheDepartmentofChemicalandMaterialsEngineering,UniversityofKentucky,Lexington,Kentucky40506
EditedbyGeraldW.Hart
YKL-40 is a mammalian glycoprotein associated with pro- easesandamultitudeofcancers(1–4).Manydifferenttypesof
gression,severity,andprognosisofchronicinflammatorydis- cellsincludingsynovial,endothelial,epithelial,smoothmuscle,
easesandamultitudeofcancers.Despitethiswelldocumented andtumorcellsproduceYKL-40invivo,likelyinresponseto
association, identification of the lectin(cid:3)s physiological ligand environmentalcues(5–8).Speculationastobiologicalfunction
and,accordingly,biologicalfunctionhasprovenexperimentally ofYKL-40variesfrombothinhibitingandantagonizingcolla-
difficult. YKL-40 has been shown to bind chito-oligosaccha- genfibrilformationasaresultofinjuryordisease(9),aswellas
rides;however,theproductionofchitinbythehumanbodyhas conferringdrugresistanceandincreasingcellmigrationlead-
notyetbeendocumented.Possiblealternativeligandsinclude ing to progression of cancer (3), and protection from chitin-
proteoglycans, polysaccharides, and fibers like collagen, all of containingpathogens(10).AlthoughtheassociationofYKL-40
whichmakeuptheextracellularmatrix.ItislikelythatYKL-40is withphysicalmaladiesiswelldocumented,identificationofthe
interacting with these alternative polysaccharides or proteins
physiologicalligandofthislectin,andthusbiologicalfunction,
withinthebody,extendingitsfunctiontocellbiologicalroles
remainselusive.
such as mediating cellular receptors and cell adhesion and
Mammalian YKL-40 is classified as a family 18 glycoside
migration.Here,weconsiderthefeasibilityofpolysaccharides,
hydrolase based on high homology with this well conserved
including cello-oligosaccharides, hyaluronan, heparan sulfate,
classofenzymesintheCAZydatabase(10–12).Althoughsim-
heparin,andchondroitinsulfate,andcollagen-likepeptidesas
ilarinstructuretofamily18glycosidehydrolases,YKL-40lacks
physiologicalligandsforYKL-40.Weusemoleculardynamics
catalyticactivityasaresultofsubstitutionoftheglutamicacid
simulationstoresolvethemolecularlevelrecognitionmecha-
andasparticacidmotiftypicalofcatalyticallyactivefamily18
nismsandcalculatethefreeenergyofbindingthehypothesized
hydrolases, rendering YKL-40 a lectin, a non-catalytic sugar-
ligandstoYKL-40,addressingthermodynamicpreferencerela-
binding protein. Structural evidence suggests that YKL-40
tive to chito-oligosaccharides. Our results suggest that chito-
exhibitsatleasttwofunctionalbindingregions(10).Thepri-
hexaoseandhyaluronanpreferentiallybindtoYKL-40overcol-
mary binding cleft has nine binding subsites lined with aro-
lagen, and hyaluronan is likely the preferred physiological
maticresiduescompatiblewithcarbohydratebinding(Fig.1).A
ligand, because the negatively charged hyaluronan shows
putativeheparin-bindingsite,locatedwithinasurfaceloop,has
enhancedaffinityforYKL-40overneutralchitohexaose.Colla-
alsobeensuggested(Fig.1),althoughinvitrobindingaffinity
gen binds in two locations at the YKL-40 surface, potentially
studieshavebeenunabletoconclusivelydemonstratethis(11).
relatedtoaroleinfibrillarformation.Finally,heparinnon-spe-
Binding affinity and structural studies reveal that chito-
cificallybindsattheYKL-40surface,aspredictedfromstruc-
oligosaccharidesarenaturalsubstrates(6,10,11).Inlinewith
turalstudies.Overall,YKL-40likelybindsmanynaturalligands
family 18 glycoside hydrolases, YKL-40 uniquely binds short
in vivo, but its concurrence with physical maladies may be
andlongchito-oligomers,indicatingpreferentialsiteselection
relatedtoassociatedincreasesinhyaluronan.
basedonaffinity(10).Chitohexaosebindinghasalsobeenpur-
ported to induce conformational changes in YKL-40 (10),
although this has not been observed in all structural studies
YKL-40, also known as chitinase 3-like 1, is a mammalian
(11). Lectin binding niches are widely believed to be “pre-
glycoprotein implicated as a biomarker associated with pro-
formed” to the preferred ligand, exhibiting little conforma-
gression,severity,andprognosisofchronicinflammatorydis-
tionalchangeuponbinding(13,14).Despiteapparentaffinity,
chitinisnotanaturalbiopolymerwithinmammalianorbacte-
*ThisworkwassupportedbyKentuckyScienceandEngineeringFoundation rialcells,andthepresenceofchitinorchito-oligosaccharidesin
Grant KSEF-148-502-13-307). Computational time for this research was
mammals is likely related to fungal infection (15). The noted
providedbytheExtremeScienceandEngineeringDiscoveryEnvironment
(83), which is supported by National Science Foundation Grant ACI- up-regulation of YKL-40 in response to inflammation lends
1053575underAllocationMCB090159.Theauthorsdeclarethattheyhave credencetotheargumentthatYKL-40functionsaspartofthe
noconflictsofinterestwiththecontentsofthisarticle.
□S This article contains supplemental text, Tables S1–S6, Figs. S1–S8, and innateimmuneresponseinrecognitionofselffromnon-self(6,
MoviesS1–S3. 16); however, high expression levels of YKL-40 in carcinoma
1To whom correspondence should be addressed: Dept. of Chemical and tissues suggest function beyond the innate immune response
MaterialsEngineering,UniversityofKentucky,177F.PaulAndersonTower,
mayalsoexist(17,18).Theextracellularmatrixiscomprisedof
Lexington, KY 40506. Tel.: 859-257-2902; Fax: 859-323-1929; E-mail:
[email protected]. a mesh of proteoglycans (protein-attached glycosaminogly-
This is an Open Access article under the CC BY license.
2624 JOURNALOFBIOLOGICALCHEMISTRY VOLUME292•NUMBER7•FEBRUARY17,2017
IdentifyingthePhysiologicalLigandofYKL-40
therconfoundsthequestionofmechanismwhenconsidering
physiological ligands, because YKL-40 is capable of binding
bothproteinandcarbohydrates.
UnderstandingthemechanismandaffinitybywhichYKL-40
bindsligandsiscrucialtoourunderstandingofitsphysiological
function.Thisknowledgewillserveasafoundationforfuture
campaigns toward rational development of a potent antago-
nistsenablingcellbiologicalstudyandaddressingYKL-40asa
therapeutictarget.Toaccomplishthisgoal,wemustdescribe
the molecular level mechanisms governing the interaction of
YKL-40 with both polysaccharide and collagen-like polypep-
tidesandquantitativelyevaluateaffinity.Inthisstudy,weused
FIGURE1.SurfacerepresentationofYKL-40showingthebindingcleft classicalmoleculardynamics(MD)2simulationstodifferenti-
withaboundhexamerofchitin.Bindingsites(cid:2)2through(cid:3)4arenum-
ate modes of ligand recognition and specificity. Using free
bered.Sites(cid:3)5,(cid:3)6,and(cid:3)7havealsobeenidentifiedbutarenotshown.The
putativeheparin-bindingsiteisshowninblue. energyperturbationwithreplicaexchangemoleculardynamics
(FEP/(cid:2)-REMD)andumbrellasamplingMD,wequantitatively
cans),polysaccharides,andfibersincludingcollagen.Analter- determinedaffinitiesovercomingtheexperimentaldifficulties
nate theory to the pathogenic protection function is that a encounteredthusfar.Asphysiologicalligands,weconsidered
closelyrelatedpolysaccharide,insteadofchitin,playstheroleof several options within both the polysaccharide and proteina-
thephysiologicalligandinmediatingcellularfunction(11). ceous classes. Below, we provide a brief description of each
Despitethestructuralsimilaritybetweenchito-oligosaccha- carbohydrateligandconsidered,aswellasjustificationforcon-
ridesandtheproteoglycancarbohydratemonomers,littleevi-
siderationofthecollagen-likemodels.
denceofpolysaccharidebindingbeyondtheoriginalstructural
Polysaccharides—Weselectedpolysaccharidesforthisstudy
studiesexists(10,11).Infact,weareawareofonlyoneother
basedontheirsimilaritytochito-oligomers,aswellasnatural
studyfocusingonthemolecular-levelmechanismofcarbohy-
occurrence in mammalian cell walls and/or the extracellular
dratebindinginYKL-40(19).Fromabioinformaticsandstruc-
matrix. The chito-oligomer from structural studies was
turalcomparisonofYKL-40toasimilarchi-lectin,mammary
included as a control (10, 11). Chitin is a naturally occurring
glandprotein40(20),theauthorsproposeanoligosaccharide
biopolymer comprised of repeating N-acetyl-D-glucosamine
bindingmechanismthatinvolvestryptophan-mediatedgating (GlcNAc)monomericunitsconnectedby(cid:3)-1,4-glycosidiclink-
oftheprimarycarbohydratebindingsite(Fig.1)(19).However,
ages(Fig.2).Thecentralringofthemonomer,asix-membered
in lieu of a dynamics-based investigation, little can be con-
pyranose,iscommontoanumberofcarbohydratesincluding
cludedaboutthebindingmechanismofYKL-40ligandsother
glucose. Given the chemical similarity, as well as the general
thanchito-oligosaccharides,andconformationalchangesrela-
presenceofglucoseinmammaliancellsasaformofenergy,a
tivetobindingareinaccessible.Fromproteinpurificationtech-
hexameric cello-oligomer was also examined as a potential
niques, namely heparin-Sepharose chromatography, we also
physiologicalligand,despiteitsunlikelypresenceamongmam-
knowthatYKL-40reversiblybindsheparin(7,11,21);however,
malianglycosaminoglycans.
affinitydataforthisinteractiondonotexist.Basedontheinter-
Asdescribedabove,YKL-40bindsheparin,andthus,likely
action with heparin, it is reasonable to hypothesize heparan
alsobindsheparansulfate.Heparansulfate,alesssulfatedform
sulfateglycosaminoglycans,existingaspartoftheextracellular
ofheparin,isapolysaccharidefoundinabundanceintheextra-
matrix construct, are potential physiological ligands. Visual
cellularmatrixandatthecellsurface(27).Heparansulfateis
inspectionoftheproteinstructuresuggeststhatheparansul-
constructed from a repeating disaccharide of (cid:3)-D-glucuronic
fatefragmentsmaybeeasiertoaccommodatewithinthecar-
acidandN-acetyl-(cid:4)-D-glucosamine(Fig.2).Ofalltheglycos-
bohydrate-bindingsitethanheparinitself(11).Itfollowsthat
aminoglycans,heparansulfateisthemoststructurallycomplex.
otherstructurallysimilarcarbohydratefragmentswouldbind
Atleast24differentcombinationsofthedisaccharidemono-
withsimilaraffinityinacomparablemechanism.
merexist,withdifferencesarisingasaresultofvariationinboth
The association of YKL-40 with ailments such as arthritis,
isomeranddegreeofsidechainsulfation(28).Additionally,the
fibrosis,andjointdiseaseissuggestiveofmolecular-levelinter-
heparan sulfate polysaccharide can exhibit both sulfated and
actionswithconnectivetissueandthuscollagen(22–26).Moti-
unsulfated domains. Physiologically, the unsulfated disaccha-
vated by understanding the physiological role of YKL-40 in
connectivetissueremodelingandinflammation,Biggetal.(9) ride(cid:3)-D-glucuronicacid(1,4)N-acetyl-(cid:4)-D-glucosamineisthe
most prevalent form of heparan sulfate (28). Focusing on the
investigatedassociationofYKL-40withcollagentypesI,II,and
mostrelevantphysiologicalligands,weexaminedthefullysul-
III using affinity chromatography to confirm binding to each
fatedformheparinandtheunsulfatedformheparansulfate.
type.TheauthorsreportYKL-40specificallybindstoallthree
collagentypes.Additionally,theauthorsusedsurfaceplasmon
resonancetoconfirmbindingtocollagentypeI.Unfortunately,
thereportedaffinityconstantswereinconsistentacrossexper- 2The abbreviations used are: MD, molecular dynamics; PMF, potential of
meanforce;FEP,freeenergyperturbation;REMD,replicaexchangemolec-
imentsasaresultofaggregation.Nevertheless,theworkclearly
ulardynamics;WCA,Weeks-Chandler-Anderson;RMSD,rootmeansquare
indicatesthatYKL-40iscapableofbindingcollagen.Thisfur- deviation;RMSF,rootmeansquarefluctuation;PDB,ProteinDataBank.
FEBRUARY17,2017•VOLUME292•NUMBER7 JOURNALOFBIOLOGICALCHEMISTRY 2625
IdentifyingthePhysiologicalLigandofYKL-40
Gly-Xaa-Yaa repeating amino acid sequence (34). Generally,
the unspecified amino acids, Xaa and Yaa, are proline and
hydroxyproline,respectively.
Modelcollagenpeptideshavebeenobservedintwodifferent
symmetries:theoriginalRichandCrickmodelwith10/3sym-
metry (10 units in 3 turns) and the 7/2 symmetry of a more
tightly symmetrical triple helix (35–37). On the molecular
scale,collagentypewillhaverelativelylittleimpactonbinding
toYKL-40.However,symmetrymayhaveanimpactonhydro-
genbondinginthebindingsite,andthus,overallaffinity,which
will provide unique insight into physiological relevance. To
date,modelcollagenpeptidesofatrue10/3symmetryhavenot
been reported. Rather, the peptides either have a 7/2 helical
pitch or are somewhat “intermediate” in symmetry leading
sometobelievethatthe7/2symmetryisrepresentativeofthe
true collagen helical structure (38). However, it is not known
howuniversallytruethishypothesisisbecausethestructuresof
model peptides capture just a small subsection of the larger
macromolecularstructure(39).
With a broad range of possible collagen architectures, we
have selected four representative model collagen peptides
FIGURE2.Monomericunitsofthepolysaccharidesconsideredaspoten- whosestructuresarebothavailablefromcrystallographicevi-
tialphysiologicalligandsofYKL-40:cellohexaose,chitohexaose,hepa-
dence and span the 10/3 and 7/2 symmetries to the greatest
ransulfate,heparin,hyaluronan,andchondroitinsulfate.Thechito-oli-
gomerisapolymerof(cid:3)-1,4-linkedGlcNAcmonomers.Heparansulfatewas possibleextent.Thefirstcollagenpeptideconsideredisthatof
modeledasa(cid:3)-1,4,(cid:4)-1,4-linkedchainofGlcAandGlcNAc.Heparinwasrep-
the basic collagen peptide model, PDB code 1CAG (40). The
resentedasthe(cid:3)-1,4,(cid:4)-1,4-linkedoligomerofGlcAandGlcNS.Hyaluronan
andchondroitinsulfateare(cid:3)-1,3,(cid:3)-1,4-linkedoligomers;theformerconsists reported1.9ÅresolutionstructureexhibitsasingleGlytoAla
ofGlcAandGlcNAc,andthelatterconsistsofGlcAandGalNAc.GlcA,(cid:3)-D- substitution and 7/2 symmetry overall. Near the substitution
glucuronicacid;IdoA,(cid:4)-D-iduronicacid;GlcNS,N-sulfo-(cid:4)-D-glucosamine;Gal-
NAc,N-acetyl-(cid:3)-D-galactosamine. site,thehelixrelaxessomewhatfrom7/2symmetry,although
notsomuchastochangeoverallsymmetry.Thesecondcolla-
genmodelpeptideweconsiderisavariationofthe1CAGpep-
Hyaluronan is a particularly interesting glycosaminoglycan tide, where we reverted the alanine substitution to its native
relative to this study, because chito-oligosaccharides are pre- glycine.Minimizationofthisstructurereturnsthehelixtofull
cursorstohyaluronansynthesisinvivo(29–31).Thestructural 7/2 symmetry; we refer to this peptide as “native 1CAG”
relationshipofthesetwomoleculesissuchthatbindingmech- here. The third model represents a segment from type III
anismsmaybesimilaratalternatingbindingsites.Hyaluronan homotrimercollagenwithapproximate10/3symmetryinthe
is a polysaccharide of a repeating (cid:3)-D-glucuronic acid and middle part of the helix (PDB code 1BKV) (35). This middle
N-acetyl-(cid:3)-D-glucosamine disaccharides connected by alter- part of the 1BKV model peptide, also referred as the T3–785
nating (cid:3)-1,3- and (cid:3)-1,4-glycosidic linkages (Fig. 2). As with
peptide, has an imino acid-poor sequence of GITGARGLA.
heparansulfate,hyaluronanisalsoaglycosaminoglycancom-
Ourfourthmodel,1Q7D,isatriplehelicalcollagen-likepeptide
prising the extracellular matrix. At extracellular pH, the car-
sequence including a hexapeptide Gly-Phe-Hyp-Gly-Glu-Arg
boxyl groups of glucuronic acid are fully ionized, giving the
(GFOGER) motif in the middle (41); this motif is not suffi-
ligand an overall negative charge under typical physiological
ciently long to exhibit 10/3 symmetry, exhibiting, rather, an
conditions(32).
intermediatedegreeof7/2helicalsymmetry.This1Q7Dmodel
Finally,weconsiderchondroitinsulfate,whichisalsoagly- isknowntobindtheintegrin(cid:4)2(cid:3)1-Idomainprotein(42),and
cosaminoglycanprevalentinmammals.Theprimarystructural theGFOGERmotifisfoundinthe(cid:4)1chainoftypeIcollagen.
unitsofchondroitinsulfatearearepeating(cid:3)-D-glucuronicacid
and N-acetyl-(cid:4)-D-galactosamine disaccharides connected by ExperimentalProcedures
alternating(cid:3)-1,3-and(cid:3)-1,4-glycosidiclinkages(Fig.2).Aswith
MolecularDynamicsSimulations
heparansulfate,chondroitinsulfateexistsinvariablysulfated
types(33);wehaveselectedtheC4andC6sulfatedvariantof MD simulations were constructed starting from the chito-
chondroitinsulfatepolysaccharideasamodel. hexaose-boundYKL-40structure(PDBcode1HJW)deposited
Collagen-like Peptide Models—Collagen has also been con- byHoustonetal.(10).Theaposimulationsimplyremovedthe
sideredasapotentialphysiologicalligandbasedonthenoted chito-oligomer from the primary binding cleft. The N-linked
affinityandparticipationofYKL-40incollagenfibrilformation glycancapturedintheYKL-40structure,atAsn60,wasincluded
(9).Collagen,unliketheotherpotentialphysiologicalligands,is in system preparation. Because crystal structures of YKL-40
amacromolecularproteinwithatriplehelixstructure.There boundtootherpolysaccharidesarenotavailable,weusedthe
areatleast27distincttypesofhumancollagen,formingavari- structuralsimilarityofpolysaccharidesasthebasisformodel-
etyofbiologicalnetworks,allofwhichareconstructedofabasic ingtheremainingpolysaccharidesinthisinvestigation.Inthe
2626 JOURNALOFBIOLOGICALCHEMISTRY VOLUME292•NUMBER7•FEBRUARY17,2017
IdentifyingthePhysiologicalLigandofYKL-40
FIGURE3.Molecularshapecomplementaritydockingcalculationspredictcollagen-likepeptideswillbindtoYKL-40intwopossibleorientations.a,
thefrontviewofYKL-40(graysurface)withcollagendockedinsiteA(greenstick).b,thebackviewwherecollagenisdockedinsiteB(cyanstick).c,topviewof
YKL-40illustratingrelativepositionsofbindingsites.Theputativeheparin-bindingsubsiteisshowninbluesurfacetoaidinvisualizationofrelativeorientation
oftheprotein(cid:4)proteincomplexes.Thisparticularfigureshowstheintegrin-bindingcollagenpeptide,1Q7D(41),inthepredictedbindingsitesalongthesurface
ofYKL-40;similardockingwascarriedoutforothercollagenmodels.
caseofcellohexaose,hyaluronan,heparansulfate,heparin,and 300K using NAMD (51). Explicit procedural details are pro-
chondroitin sulfate, we located the central ring atoms of the videdinthesupplementalmaterials.
ligand backbone in the same location as that of the original
chitohexaose.Appropriatepyranosesidechainsandglycosidic FreeEnergyCalculations
linkages(Fig.2)wereaddedusingCHARMMinternalcoordi- FEP/(cid:2)-REMD—FreeenergyperturbationwithHamiltonian
natetablestoconstructtheremainderofthesugarresidue(43). replicaexchangemoleculardynamics(FEP/(cid:2)-REMD)wasused
AllpolysaccharidesweredescribedusingtheCHARMM36car- tocalculatetheabsolutefreeenergyofbindingthepolysac-
bohydrateforcefield(44–46).Themissingforce-fieldparam- charideligandstoYKL-40(52,53).ThisprotocolusesHam-
etersforN-sulfatedglucosamine(supplementalFig.S1)inhep- iltonianreplicaexchangeasameansofimprovingtheBoltz-
arin were developed using the force-field Toolkit plugin for mannsamplingoffreeenergyperturbationcalculations.The
VMD (47, 48). Details of this parameterization and output parallel/parallel replica exchange MD algorithm in NAMD
parameters(supplementalTableS2)arereportedinthesupple- was implemented as recently described (51, 54). The free
mentalmaterials. energy calculations performed using this approach were
Construction of the collagen-bound YKL-40 models re- accomplished through two separate sets of free energy cal-
quired docking calculations to appropriately position the culations following the thermodynamic cycle illustrated in
ligand.Thecollagenpeptidesaresignificantlylargerthananyof supplemental Fig. S2. To obtain each binding free energy,
thecarbohydrateligands;thus,itisunlikelythatacollagenmol- (cid:4)G,theboundcarbohydrateligandwasfirstdecoupledfrom
ecule occupies the primary YKL-40 binding site in the same thesolvatedprotein(cid:4)carbohydratecomplextodetermine(cid:4)G .
1
manneraschito-oligomer.Standardaffinity-baseddockingcal- Thesecondcalculationentaileddecouplingthesolvatedoligo-
culations, such as the ones performed in AutoDock, are not saccharidefromsolutionintovacuumtoobtain(cid:4)G .Thedif-
2
feasiblefordeterminationofaninitialcollagen-bindingdomain ferencebetweenthetwovalues,(cid:4)G (cid:3)(cid:4)G ,givestheabsolute
2 1
given the size and flexibility of the triple helix structures. freeenergyofbindingthegivenligandtoYKL-40.
Rather, the collagen peptides were docked on the basis of Ineachfreeenergycalculation,fiveseparatetermscontrib-
molecularshapecomplementarityusingtheonlinewebserver utetothepotentialenergyofthesystem:thenon-interacting
PatchDockBetaversion1.3(49,50).Inthecaseofeachofthe ligandpotentialenergy,repulsiveanddispersivecontributions
four collagen-like model peptides, PatchDock predicted two totheLennard-Jonespotential,electrostaticcontributions,and
potentialoccupanciesalongthesurfaceofYKL-40,siteAand the restraining potential. In each calculation, the ligand was
siteB.BindingsiteAcorrespondstotheprimarycarbohydrate- decoupled from the system by thermodynamic coupling
binding domain of YKL-40; however, the collagen ligand was parameters controlling the non-bonded interaction of the
notasdeeplyentrenchedinthecleftaschitohexaose.Binding ligand with the environment. The parameters decoupled the
siteBislocatedontheoppositesideofYKL-40fromthepri- ligandinafour-stageprocess,whereinthecouplingparameters
mary binding cleft. Thus, for each collagen-like peptide, two defined replicas that were exchanged along the length of the
MDsimulationswereconstructedrepresentingthetwopoten- alchemical pathway. This decoupling has been described in
tialbindingsites.Fig.3illustratestheresultsofthedockingwith detailpreviously(54)andisalsoreportedinthesupplemental
predictedcollagenbindingsitesAandBforthe1Q7Dcollagen- materials.Atotalof128FEPreplicaswereused,andaconven-
likemodelpeptide. tional Metropolis Monte Carlo exchange criterion governed
Theconstructedprotein-ligandsystemswereminimizedin the swaps throughout the replica exchange process (53). The
vacuumandsubsequentlysolvatedwithwaterandsodiumions. free energy of binding was determined from 20 consecutive,
Using CHARMM (43), the solvated systems were extensively 0.1-ns simulations of each corresponding system, where the
minimizedandheatedto300Kfor20ps,whichwasfollowedby first1nsofdatawerediscardedasequilibration.Onestandard
MD simulation for 100 ps in the NPT ensemble. The coordi- deviationofthelast1nsofsimulationdatawereusedtoobtain
nates following density equilibration were used as a starting anestimateoferror.Additionaldetailsaboutthesecalculations
point for 250 ns of MD simulation in the NVT ensemble at aredescribedinthesupplementalmaterials.
FEBRUARY17,2017•VOLUME292•NUMBER7 JOURNALOFBIOLOGICALCHEMISTRY 2627
IdentifyingthePhysiologicalLigandofYKL-40
FIGURE4.RelaxationofthepolysaccharideligandsintheprimarybindingcleftofYKL-40.Eachligandisshownaftera100-psequilibrationinathickstick
representation.Forcomparison,thechito-oligomer,initsequilibratedconformation,isshowninthingreenlinesbehindeacholigosaccharide.TheYKL-40
proteinhasbeenalignedsuchthateacholigosaccharideisorientedinthesamemanner;althoughYKL-40isnotshownforvisualclarity.Heparansulfate,
heparin,andchondroitinsulfaterelaxsignificantlyfromtheinitialdistortedconformation.
UmbrellaSampling—ConvergencechallengesmakeFEP/(cid:2)- onlythreebindinastablefashionintheprimarycarbohydrate
REMDinappropriatefordeterminingthebindingfreeenergy binding site of YKL-40. The three potential polysaccharide
ofthemuchlargerandmoreflexiblecollagen-likemodelpep- physiological ligands at this site include chitohexaose, cello-
tides.Thus,umbrellasamplingwasusedtodeterminethework hexaose, and hyaluronan. In the section that follows, we will
requiredtodetachthecollagenligandsfromtheshallowclefts describethedynamicsofchitohexaose,cellohexaose,andhya-
of YKL-40. Over the entire reaction coordinate, this value luronan binding to YKL-40. The remaining three ligands—
equatestobindingaffinity,enablingrelativecomparisonofcol- heparin, heparan sulfate, and chondroitin sulfate—were dis-
lagenpeptideaffinity.TheMDumbrellasamplingsimulations lodgedfromthebindingsiteoverthecourseofMDsimulations.
usedanativecontacts-basedreactioncoordinateanalogousto The (cid:4)-1,4-glycosidic linkages in heparin and heparan sulfate,
that defined by Sheinerman and Brooks (55) and as imple- insteadof(cid:3)-1,4,modifiestherelativeorientationofdisaccha-
mented in recent cellulose decrystallization studies (56, 57). ride monomers from that of the chito-oligosaccharide. The
Here,anativecontactwasdefinedasaYKL-40proteinresidue
NMR solution structure of heparin (PDB code 1HPN) shows
within12Åofacollagenpeptideresidue;distancewasdefined
thattherelaxedconformationissemi-helical(59),whichcan-
by center of geometry of a given residue. The cutoff distance
notbefeasiblyaccommodatedintheconserved,narrowcarbo-
wasselectedtobelargerthanthenon-bondedcutoffdistance,
hydrate binding site of YKL-40. Heparan sulfate suffers from
ensuringthatthecollagenligandwasnolongerinteractingwith
similarstericconstraintsposedbytherelaxationdrivingforce.
YKL-40.Additionally,thewaterboxesofthecollagen-YKL-40
The bulky sulfated side chains of heparin introduce further
systemsweremadebiggertoaccommodatetherequiredsepa-
steric hindrance and, in the case of heparin and chondroitin
rationdistance.
sulfate, unfavorably strong electrostatic interactions resulting
Thechangeinfreeenergywasdeterminedasafunctionof
fromnegativelychargedmoietiesinconvenientlylocatedalong
thereactioncoordinate,(cid:5),formulatedastheweightedsumof
thecleft(i.e.withoutaco-located,oppositelychargedprotein
thestatesofthenativecontacts.Theinitialcoordinatesofthe
residue)ejecttheligandsfromthecleft.
bound systems were selected from 250-ns equilibrated snap-
Inthecasesofheparin,heparansulfate,andchondroitinsul-
shots.Theinitialnumberofnativecontactsandtheirweights
fate,theligandsquickly“relax”fromtheinitialwideV-shaped
werecalculatedfromthesesnapshots.Aninitialreactioncoor-
conformationastheyareexpelledfromthecleftbycharge-and
dinateof0(normalized)correspondstothisinitialcondition,
steric-based effects. Relaxation of the sugar from the initial
and a final reaction coordinate of 1 corresponds to all of the
bindingposeissufficienttoinitiatelossofcriticalnon-bonded
nativecontactsbeingoutsidethe12-Åcutoff(i.e.theligandis
interactionsalongwithasubsequentreductioninaffinity(Fig.
decoupledandfreelysamplingthebulk).Thereactioncoordi-
4).Within25ns,heparin,heparansulfate,andchondroitinsul-
natewasdividedinto20windowsevenlyspacedalongthereac-
fatewereexpelledfromthecleftintobulksolution.Eachofthe
tioncoordinate,andeachwindowwassampledfor5ns,where
threeligandscapableofbindingwiththeprimarybindingcleft
thereactioncoordinatewasmaintainedatthespecifiedvalue
maintainedthe(cid:3)1boatconformationovertheentiresimula-
usingaharmonicbiasingforcewiththeforceconstantof41,840
kJ/mol. The potentials of mean force profiles were calculated tion.Chitohexaoseandcellohexaoseremainedinthebinding
usingtheweightedhistogramanalysismethod(WHAMsoft- cleftovertheentire250-nsMDsimulationwhilemaintaining
ware),anderroranalysiswasperformedusingbootstrapping. theinitialwideVshape.HyaluronandevelopedasharpVshape
Adetailedlistingofallthesimulationsandfreeenergycalcula- within a few nanoseconds and maintained this conformation
tions performed as part of the objectives of this study is pro- within the binding cleft for the remainder of the simulation
videdinsupplementalTableS1. (supplementalFig.S6);thisisprimarilyduetovariationingly-
cosidic linkage, where hyaluronan exhibits a (cid:3)-1,3-linkage
ResultsandDiscussion withinthemonomerinsteadofthe(cid:3)-1,4-linkageofcello-and
Protein-PolysaccharideBindinginYKL-40—MDsimulation chitohexaose. Also, comparison of the equilibrated chito-
suggeststhatofthesixpolysaccharideoligomersinvestigated, hexaose- and hyaluronan-bound structures disabuses one of
2628 JOURNALOFBIOLOGICALCHEMISTRY VOLUME292•NUMBER7•FEBRUARY17,2017
IdentifyingthePhysiologicalLigandofYKL-40
FIGURE5.SnapshotsfromfourindependentMDsimulationsofheparin(whitestick)bindingtoaputativeheparin-bindingsite(bluesurface)ofYKL-40
(graysurface).TheprimaryoligosaccharidebindingsiteofYKL-40ismarkedbyanaromaticresidueshowninsalmonsurfacerepresentation.Transparent
spheresillustratetheinitialsimulationpositionsofheparin.Intwocases,aandb,theheparinligandwasinitiallyboundintheprimaryYKL-40bindingsite.In
bothcases,theligandwasexpelledfromtheprimarybindingsiteintosolutionandlocatedtheheparin-bindingsitethroughelectrostaticinteractions.Two
additionalsimulations,candd,wereinitializedwiththeheparinligandfreeinsolution.Again,theligandsidentifiedtheYKL-40heparin-bindingdomain
throughcharge-basedinteractions.Theliganddidnotspecificallybindinaparticularconformation.Rather,theliganddynamicallyinteractedwiththe
heparin-bindingdomain.
thenotionthatsimilarbindingmechanismsexistatalternate dentMDsimulationsoftheYKL-40/heparinsystem:onewitha
binding sites, because only the (cid:3)1 site pyranose appears to newrandomnumberseed,althoughinthesameconfiguration,
maintainsimilarsidechainorientation. andtwoadditionalsimulationswiththeligandrandomlyplaced
Thenativedistortedconformationischaracteristicofglyco- insolution(supplementalMovieS2).Ineachcase,theheparin
sidehydrolasepyranosebindingbehaviorinthe(cid:3)1site(Fig.4) oligomers were capable of finding and binding to a group
(60). In solution, polysaccharide pyranose moieties adopt the of charged residues at the surface of YKL-40 (Fig. 5); these
energeticallyfavorablechairconformation(61);however,when were the basic residues of a putative heparin-binding site,
boundtoanenzyme,theactivesitesofcatalyticallyactivegly- GRRDKQH, at positions 143–149. Interestingly, this domain
cosidehydrolasesdistortthepyranoseringinthe(cid:3)1binding
followsaconsensusproteinsequence,XBBXBX(whereBisa
subsiteintoalessenergeticallyfavorableconformation,suchas
basicresidueandXisanynon-basicaminoacid),thatisnoted
aboatorskewconformation(62–65),primingthesubstratefor
for its ability to recognize polyanions like heparin (67). In all
hydrolytic cleavage. Interestingly, the chitohexaose ligand
fourcases,heparinrecognizedthebindingsitewithin25nsof
bound in the primary binding site of YKL-40 exhibits a boat
MDsimulation(Fig.5),occasionallyvisitingothermoderately
conformation despite not being catalytically active (10). This
basicsurfacelocationsbeforelocalizingaroundtheGRRDKQH
suggeststhatthesugardistortioninthe(cid:3)1bindingsitecon-
motif. The strong electrostatic interaction arose from the
tributestoligandbindingaswellascatalysis,becausethereisno
dynamicformationofsaltbridgesbetweeneitherthesulfateor
evolutionary requirement to overcome an activation energy
thecarboxylgroupsoftheheparinoligosaccharideandtheside
barrierincatalyticallyinactivelectins.Arecentstudyofaho-
mologous chitinase suggested that (cid:3)1 pyranose relaxation chainsofthebasicaminoacids(supplementalTableS3).Lys155
andLys193alsoexhibitlarge,favorableinteractionswithhepa-
reducesbindingaffinityandaffordstheligandmoreflexibility
rin, interacting with the opposite end of the polysaccharide
andentropicfreedom(66),whichisconsistentwithourfind-
ligand as it binds at the surface. Coupled with experimental
ingsfromthe250-nsMDhere.
PutativeHeparin-bindingSite—Despitethefactthatthehep- observationofheparinaffinity,ourMDsimulationssuggesta
arinoligomercouldnotbeaccommodatedbytheYKL-40bind- non-specific, surface-mediated binding interaction between
ingcleft,MDsimulationsdosuggestthattheoligomerinteracts YKL-40andtheextensivelysulfatedheparinoligomer(10,11).
with the surface of YKL-40 at a putative heparin-binding site Althoughtheunsulfatedvariant,heparansulfate,didnotvisit
(Fig. 1). After ejection from the primary binding site, the oli- the heparin-binding site, chondroitin sulfate also attached to
gomerspontaneouslybindstotheYKL-40heparin-bindingsite theputativeheparin-bindingsiteinasimilarfashiontoheparin.
(supplemental Movie S1). To address the significance of this Giventhechemicalsimilarityoftheseglycosaminoglycans,i.e.
unanticipated event, we performed three additional indepen- highly sulfated and negatively charged, we anticipate the
FEBRUARY17,2017•VOLUME292•NUMBER7 JOURNALOFBIOLOGICALCHEMISTRY 2629
IdentifyingthePhysiologicalLigandofYKL-40
TABLE1
EnergeticcomponentsofthefreeenergyofligandbindingtoYKL-40
System (cid:2)G (cid:2)G (cid:2)G (cid:2)G (cid:2)G (cid:2)G
repu disp elec rstr Tot b
kJmol(cid:3)1 kJmol(cid:3)1 kJmol(cid:3)1 kJmol(cid:3)1 kJmol(cid:3)1 kJmol(cid:3)1
YKL-40(cid:2)Cellohexaose 379.5(cid:5)3.8 (cid:3)382.3(cid:5)2.1 (cid:3)306.6(cid:5)2.2 (cid:3)1.1 (cid:3)310.5(cid:5)3.6 (cid:3)12.6(cid:5)3.7
Cellohexaose 316.2(cid:5)1.8 (cid:3)287.4(cid:5)1.3 (cid:3)326.7(cid:5)1.6 0 (cid:3)297.9(cid:5)2.8
YKL-40(cid:2)Chitohexaose 535.9(cid:5)11.7 (cid:3)538.9(cid:5)4.2 (cid:3)407.7(cid:5)7.5 (cid:3)5.5 (cid:3)416.2(cid:5)11.2 (cid:3)63.3(cid:5)12.6
Chitohexaosea 329.6(cid:5)4.5 (cid:3)306.2(cid:5)3.0 (cid:3)376.3(cid:5)3.4 0 (cid:3)352.9(cid:5)5.9
YKL-40(cid:2)Hyaluronan 438.1(cid:5)2.8 (cid:3)439.5(cid:5)1.5 (cid:3)1395.9(cid:5)4.2 (cid:3)1.3 (cid:3)1398.6(cid:5)4.3 (cid:3)106.8(cid:5)4.6
Hyaluronan 333.1(cid:5)1.4 (cid:3)306.0(cid:5)1.3 (cid:3)1318.9(cid:5)1.5 0 (cid:3)1291.8(cid:5)2.5
aHamreetal.(68).
XBBXBXmotifmayalsoroutinelyappearinchondroitin-bind- charideligandcapableofbindingintheYKL-40bindingcleft
ingproteins. willlikelyexhibitasimilarlyfavorableWCAbindingfreeenergy
Polysaccharide Ligand Binding Affinity—Each of the three component. In the following section, we expand upon the
polysaccharidesmaintainingcontactwiththeprimarybinding molecularlevelinteractionsthatcontributetopolysaccharide
siteofYKL-40,cellohexaose(orlikelyanyglucosederivative), bindingaffinityinYKL-40.
chitohexaose, and hyaluronan, are feasible ligands. However, Based on these results, it is unlikely that a cello-oligomer
freeenergycalculationssuggestthathyaluronanmaypreferen- wouldbindinthecleftofYKL-40overachito-oligomer,and
tially bind with YKL-40 if chitin is not present in the human thus, although there is potential for YKL-40 to bind a cello-
bodyasaresultoffungalinfection.Theabsolutefreeenergiesof oligomerorglucose,itwouldnotbeinhibitory.Hyaluronan,on
bindingcellohexaose,chitohexaose,andhyaluronantoYKL-40 theotherhand,likelycompeteswithchito-oligomersinbind-
were (cid:3)12.6 (cid:5) 3.7, (cid:3)63.3 (cid:5) 12.6, and (cid:3)106.8 (cid:5) 4.6 kJ/mol, ing,whichisdueinlargeparttotheelectrostaticfavorabilityof
respectively. Repulsive, dispersive, and electrostatic compo- thechargedsidechainsofhyaluronanintheYKL-40binding
nentsofthefreeenergychangesaretabulatedinTable1.Con- cleft.Clinicaldatasupporthyaluronanasabiomarkerforcan-
vergence assessment of the free energy calculations has been cer prognosis and inflammation (32, 70), the same events in
provided in supplemental Fig S3. We recently calculated the which YKL-40 appears at elevated serum levels (5). To our
freeenergyofsolvationforchitohexaoseaspartofastudyon knowledge,therearenostudiesevaluatingtheco-existenceof
family18chitinases(68);thisvaluehasbeenusedinourcalcu- YKL-40 and hyaluronan. The cell receptor protein CD44 has
lationofchitohexaosebindingaffinitytoYKL-40forcomputa- been implicated in hyaluronan binding interactions and is
tionalefficiency.Themethodsusedtocalculatesolvationfree also involved in confounding scenarios, both aggravating and
energyofchitohexaosewereidenticaltothosedescribedhere. improvinginflammation(71).SequencealignmentofYKL-40
Furthermore, the binding free energy of chitohexaose to with the hyaluronan-binding domain of human CD44 (72),
YKL-40isingoodagreementwiththatofhomologousfamily18 usingBLASTP2.3.0(73),showsnohomology,furthersuggest-
chitinases,despitemutationofthecatalyticmotifinthelectin. ingthatthisYKL-40-hyaluronanbindingisdifferentfrompre-
Chitohexaoseandcellohexaosearebothneutralligandsbut viouslyknownhyaluronan-bindingproteins(74).
display a significant difference in binding affinity to YKL-40. PolysaccharideBindingDynamics—YKL-40ishighlyhomo-
Electrostaticinteractionsappeartobeoneofthemoresignifi- logous with carbohydrate-active enzymes found in glycoside
cantcontributorstotheenhancedaffinityofchitohexaoseover hydrolasefamily18(12,75).Despitelackingcatalyticability,the
cellohexaose(Table1).Forcellohexaose,thechangeintheelec- primary polysaccharide binding site of YKL-40 exhibits
trostatic component of binding free energy was unfavorable remarkablesimilaritytothesefamily18chitinases.Assuch,one
(20.1 (cid:5) 2.7 kJ/mol), whereas the same component for chito- may reasonably expect that ligand binding within this family
hexaose was energetically favorable ((cid:3)31.4 (cid:5) 8.2 kJ/mol). In willdemonstratesimilartrends,regardlessofevolutionaryori-
thecaseofhyaluronan,electrostaticinteractionsplayaneven gin. Indeed, we observe that chitohexaose, cellohexaose, and
greater role in enhancing affinity of the ligand for YKL-40 hyaluronan binding in the primary binding site of YKL-40
((cid:3)77.0 (cid:5) 4.5 kJ/mol). This increasing electrostatic contribu- follow a general pattern common to carbohydrate-active
tionisreflectiveofincreasingnumberofelectronegativeatoms enzymes. Namely, that ligand binding interactions are medi-
inthesidechainsofcarbohydratesaswegofromcellopentaose ated by carbohydrate-(cid:6)stacking interactions with aromatic
tochitohexaosetohyaluronan.Weobservenosignificantdif- residues, and hydrogen bonding interactions are critical to
ferencesincellohexaose,chitohexaose,orhyaluronanbinding overallligandaffinityandstability.Weinvestigatethesetrends
to YKL-40 arising from Weeks-Chandler-Anderson (WCA) quantitativelythroughanalysisoftheMDsimulationtrajecto-
dispersionandrepulsion(Table1).Thisislargelyafunctionof ries,includingrootmeansquaredeviation(RMSD)ofthepro-
themolecularsimilarityofthepyranoseringscomprisingthe tein,rootmeansquarefluctuation(RMSF)ofboththeprotein
monomericunitsofthreeoligosaccharides(Fig.2).Thepyra- and the ligands over the course of the simulation, hydrogen
noseringsofcarbohydratesboundintheactivesitesofglyco- bondinganalysis,degreeofsolvationoftheligand,andinterac-
sidehydrolases,andbyextensionthebindingcleftsoflectins, tionenergyoftheligandwiththeprotein.
form carbohydrate-(cid:6)stacking interactions with surrounding Cellohexaose,chitohexaose,andhyaluronanbindinginthe
aromaticresiduesalongtheclefts(69).InYKL-40,thesestack- primary YKL-40 binding site did not adversely affect protein
inginteractionsareformedinthe(cid:3)3and(cid:3)1bindingsiteswith dynamics.Ineachcase,bindingthepolysaccharideliganddid
residuesTrp31andTrp352,respectively.Naturally,anypolysac- notsignificantlydisturbtheproteinbackbone(i.e.proteinfold),
2630 JOURNALOFBIOLOGICALCHEMISTRY VOLUME292•NUMBER7•FEBRUARY17,2017
IdentifyingthePhysiologicalLigandofYKL-40
luronanisasstable,ifnotmoreso,aschitohexaoseinthepri-
marybindingsite(Fig.6a);however,cellohexaoseappearstobe
morestablerelativetothetwootherligandsattheendsofthe
bindingcleft.Thislatterfindingisafunctionofthelengthofthe
sidechainsattachedtothepyranoseringsofeachoftheligands.
Ofthethreecarbohydrates,thecello-oligomerhastheshortest
sidechains,andthus,theligandfluctuateslessbecauseitdoes
not need to rearrange as significantly to induce binding. As
shownabove,thisdoesnotnecessarilycorrespondtothemost
thermodynamicallypreferentialligand,andlowerRMSFcould
also be interpreted hypothetically as loss of translational and
conformational freedom, resulting in unfavorable entropic
contribution.
The hydrogen-bonding partners of chitohexaose, cello-
hexaose,andhyaluronanarequitedifferent,largelyasaresult
of the conformational change of hyaluronan (supplemental
TableS4).Definingahydrogenbondasapolaratomwithin3.4
Å and 60° of a donor, we identified the formation of donor-
acceptorpairsandpercentoccupancyofthesehydrogenbonds
between the protein and each carbohydrate moiety over the
courseofthe250-nsMDsimulations(supplementalTableS4).
Asdescribedabove,hyaluronanformedasharpVshapeinthe
polysaccharidebindingcleft,whichminimizedsterichindrance
and, in turn, modified accessible hydrogen bonding partners
relativetochito-andcellohexaose.Hydrogenbondsatthe(cid:2)1
site, between glucuronic acid and Asp207, Arg263, and Tyr141,
stabilized the hyaluronan conformation (supplemental Table
S4).Inthe(cid:3)1subsite,chitohexaoseprimarilyhydrogenbonds
withthesidechainofTyr206andthemainchainofTrp99.Inthe
casesofbothcellohexaoseandhyaluronan,theinteractionwith
Tyr206wasabolishedandinsteadsupplementedbyTrp99alone.
Inthe(cid:3)2subsite,theoxygenofthechitohexaoseacetylformsa
long-livedhydrogenbondwiththeindolenitrogenofthebur-
iedTrp352;neitherhyaluronannorcellohexaoseinteractwith
the (cid:3)2 site through this tryptophan. Rather, Trp31, which
stackswiththepyranoseinthe(cid:3)3subsite,actsasahydrogen
donortothe(cid:3)2subsiteglucuronicacidsidechainofhyaluro-
nan.Inthecaseofcellohexaose,themainchainofasolvent-
FIGURE6.a,RMSFofthepolysaccharideligandsonaper-binding-subsite exposed asparagine, Asn100, almost exclusively mediates
basis.Theerrorbarswerecalculatedusingblockaveragingover2.5ns.b, hydrogenbondinginthe(cid:3)2site.The(cid:2)2,(cid:3)3,and(cid:3)4binding
averagenumberofwatermoleculeswithin3.5Åofeachligandmonomer.
subsites exhibit less frequent hydrogen bonding between the
Theerrorbarsrepresentonestandarddeviation.
ligandandtheprotein,andthereislittleconsistencyinbonding
andtheligandremainedrelativelyunperturbedoverthecourse partnersacrossligands.Certainly,thesevariationswillmanifest
ofthesimulation.TherelativelyconsistentRMSDofthepro- in enthalpic contributions to ligand binding, because even a
tein backbones suggests that the simulations reached a local singlehydrogenbondmayaccountfor4–29kJ/molofbinding
equilibrium(supplementalFig.S4a).AswiththeRMSDcalcu- freeenergyinbiologicalsystems(76,77);suchislikelythecase
lation, the RMSF of the protein backbone suggests that the for cellohexaose and chitohexaose binding to YKL-40, where
bindingofpolysaccharidesdoeslittletodisturbtheoverallpro- the latter exhibits both greater hydrogen bonding capability
tein conformation (supplemental Fig. S4b). Additionally, we andamorefavorablebindingfreeenergy.
didnotobservesignificantconformationalchangesinthecar- Keyaromaticresidues,Trp31,Trp99,andTrp352,playasig-
bohydrate-bindingsiteofYKL-40beforeorafterligandbinding nificant role in binding all three oligosaccharides. Notably,
(supplementalFig.S5).Moredetailsofproteindynamicsand these tryptophans are conserved in other lectins, including
conformationalchangeshavebeenprovidedinthesupplemen- mammaryglandprotein(MGP-40)andmammalianlectinYm1
taltext. (20, 78). According to previous structural studies, these aro-
TheRMSFoftheligand,averagedover250nsasafunctionof matic residues form hydrophobic stacking interactions with
binding site, provides a measure of relative ligand stability. pyranose moieties at the (cid:3)3, (cid:2)1, and (cid:3)1 binding subsites,
Error was estimated by block averaging over 2.5-ns blocks. respectively (11). As mentioned above, this carbohydrate-(cid:6)
Ligandstabilityoverthecourseofthesimulationsuggestshya- stackingwasobservedacrossthethreepolysaccharideligands
FEBRUARY17,2017•VOLUME292•NUMBER7 JOURNALOFBIOLOGICALCHEMISTRY 2631
IdentifyingthePhysiologicalLigandofYKL-40
FIGURE7.Nativecontactanalysisofeachcollagen-likepeptidemodelbindingtoYKL-40atsiteA.Thecolorscalerepresentsthenormalizedfrequency
(i.e.fractionalpercentageofframesinwhichthecontactwasformed)oftherespectiveYKL-40residueasanativecontact.Anativecontactwasdefinedasany
timeacollagenresiduewaswithin12ÅofaYKL-40residue,wheredistancewasdefinedbycenterofgeometryofagivenresidue.Onlyframesfromthelast100
nsofsimulation,followingaperiodofequilibration,wereconsideredinthisanalysis.
asaresultofthechemicallysimilarcarbohydrate“backbone”of passesasmanypotentialbindingmodesasfeasibletodescribe
pyranose rings. However, at the (cid:2)1 site of hyaluronan, the protein-protein binding dynamics and relative affinity of
stacking interaction with Trp99 was not maintained. Instead, YKL-40forcollagen.
prominenthydrogenbondingforcesthe(cid:2)1pyranoseringinan LigandBindingDynamicsandComparisonofModelCol-
orientation that is perpendicular to aromatic Trp99 (supple- lagen-like Peptides—Dynamics of the collagen-like peptide
mentalFig.S6).Nevertheless,thesimilarityinWCAcontribu- ligandsvarieswithbothbindingsiteandthepitchofthetriple
tionstobindingfreeenergyforallthreepolysaccharidessug- helix.Rootmeansquaredeviationillustratestherelativestabil-
geststhatthis(cid:2)1sitestackinginteractionweaklycontributes ityofeachcollagenpeptideineachofthetwobindingsites,A
totheoverallbindingfreeenergy. andB(supplementalFig.S7).Althoughthemoleculardocking
ThedegreetowhichthebindingcleftofYKL-40wasacces- resultsinveryclosecontactbetweencollagenandYKL-40(Fig.
sibletowatermoleculesdidnotchangesignificantlywiththe 4), such that collagen appears to be almost buried in the pri-
bound polysaccharide. The degree of ligand solvation was marycarbohydrate-bindingsiteofYKL-40,minimizationand
determinedbycalculatingtheaveragenumberofwatermole- MDsimulationresultsintheslightriseandshiftintheposition
culeswithin3.5Åofagivenpyranoseringoverthecourseofthe ofcollagenforeverymodelatbindingsiteA.Eachofthefour
simulations(Fig.6b);errorisgivenasonestandarddeviation. ligandsmaintainsassociationwiththebindingsiteAoverthe
Chitohexaoseandcellohexaosedisplaysimilardegreesofsol- courseof250ns,althoughwithslightlydifferentprotein-pro-
vationacrossthelengthofthecleft.Hyaluronanallowsamod- tein contacts with YKL-40 (Fig. 7). Native 1CAG, 1BKV, and
erateincreaseindegreeofsolvationofthecleftbycomparison 1Q7Dattainedrelativestabilityinapositionnotsignificantly
tochitohexaose,acrossthe(cid:3)3and(cid:2)1subsites,whereitssharp differentfromtheinitialdockedposition,butthe1CAGpep-
Vshapeagaincontributestovariationinbehavior.Giventhe tide (supplemental Movie S3), with disrupted helical content
similarity in solvent accessibility within the binding cleft resultingfromtheglycinetoalaninemutation,requiredanadjust-
regardless of ligand, it is unlikely that entropic contributions mentinpitchbeforeassociatingwithYKL-40.Thisrelativechange
fromsolvationplayaroleintheobserveddifferencesinligand in position is shown in the RMSD of the peptides during first
bindingfreeenergy. 50–100nsbeforestabilization(supplementalFig.S7a).Binding
Protein-Protein Binding in YKL-40—Based on biochemical site B accommodates helical pitches of 7/2 collagen peptides,
characterization,itisclearthatYKL-40functionallyinteracts becausenative1CAGand1Q7DassociatedwithYKL-40with
withcollagen.Forexample,Biggetal.(9)uncoveredtheability very little change in orientation relative to the initial docked
ofYKL-40tospecificallybindtypesI,II,andIIIcollagenfibers, positions.The1CAGligandwasexpelledfrombindingsiteB,as
andIwataetal.(79)recentlydiscoveredthatYKL-40secreted wasthesomewhatimperfect10/3-pitched1BKVpeptide.This
by adipose tissue inhibits degradation of type I collagen by suggeststhatYKL-40mayavoidphysiologicalinteractionswith
matrix metalloproteinase-1 and further stimulates the rate of certaincollagenfibrildomains,especiallythosehavingimper-
type I collagen formation. However, a lack of structural evi- fecthelicalpitches.Theintegrin-bindingcollagen-likepeptide
dencehasprecludeddevelopmentofanunderstandingofthe 1Q7Ddemonstratedthegreateststabilityamongcollagenpep-
molecularnatureoftheseinteractions.Usingmoleculardock- tidesinbothbindingsites(supplementalFig.S7)andformed
ing,MDsimulation,andfreeenergycalculations,wedescribe morenativecontactswithYKL-40thantheotherthreecollagen
interactions of four collagen-like peptides with two putative peptides at binding site A (Fig. 7). We anticipate that the
protein-binding sites along the surface of YKL-40. The selec- GFOGERmotifplayssubstantialroleinmediatingtheinterac-
tionofmodelpeptides,aswellasmultiplebindingsites,encom- tionofthiscollagenpeptidewithYKL-40.
2632 JOURNALOFBIOLOGICALCHEMISTRY VOLUME292•NUMBER7•FEBRUARY17,2017
IdentifyingthePhysiologicalLigandofYKL-40
Examiningthenumberofnativecontactsbetweeneachcol-
lagenpeptideandbindingsiteAofYKL-40revealsseveralcom-
moninteractionsitesmediatecollagenbindingandhelpsnar-
row down key regions of interest (Fig. 7). YKL-40 residues
69–71, 98–108, 205–215, and 230–235 interact with all four
collagenpeptidesandlikelycontributetobindingaffinity,aswe
willdiscussbelow.TheregionofYKL-40betweenresidues179
and189associateswithnative1CAG,1BKV,and1Q7D,butnot
withtheoriginal1CAG,asthispeptidewithrelaxedsymmetry
neededtoadjustitspositionfromdockedconformationtosta-
bilize the interactions. The 1Q7D model formed the greatest
number of interactions with YKL-40 residues relative to the
otherthreemodels.Similarnativecontactanalysisforbinding
siteBshowsthatevenN-terminalandC-terminalresiduesof
YKL-40areinvolvedincollagenbindingatbindingsiteB(sup-
plementalFig.S8).Itshowsthat,unlikebindingsiteA,thereis
littledifferenceinthenumberofinteractionsofmodel1Q7D
and native 1CAG collagen peptide with the binding site B of
YKL-40.
To better understand the interactions collagen makes with
YKL-40, identified through the native contact analysis, we
calculatedelectrostaticandvanderWaalsinteractionener-
giesofeachYKL-40residuewitheachcollagenpeptideover
the250-nsMDsimulations(supplementalTableS5).Visual
inspectionofthesimulationsrevealsaromaticresiduesinthe
binding sites, such as Trp212 and Trp99 in binding site A and
Phe49 in binding site B, were involved in aromatic-proline
stacking interactions with the collagen triple helices. Such
interactions are favorable, occurring because of both hydro-
phobiceffectsandinteractionbetweenthe(cid:6)aromaticfaceand
thepolarizedC-Hbonds(80).Thisisillustratedinthevander
Waalscomponentoftheinteractionenergy,whereatbinding
siteA,Trp69,Trp71,Trp99,Trp212,andPhe234showsubstantial
favorableinteractionwithcollagenpeptides,althoughthecon-
tribution varies with each collagen peptide (supplemental
TableS5).Additionally,acidicandbasicresiduesoftheinteg-
rin-bindingGFOGERmotiffromcollagen-likepeptide1Q7D FIGURE8.CollagenbindingwithYKL-40.a,saltbridgesformedbetween
formionicinteractionswiththecounter-ionicaminoacidsof the1Q7Dcollagenpeptide(greencartoon)andbindingsiteA(graysurface).b,
saltbridgeinteractionsofthe1Q7Dcollagenpeptide(cyancartoon)with
YKL-40, also known as salt bridges. Specifically, 1Q7D forms
bindingsiteB(graysurface).c,bindingfreeenergyobtainedfromumbrella
threesaltbridgesatbindingsiteAandonesaltbridgeatbinding sampling MD simulations of the YKL-40-collagen peptide systems, inter-
siteB(Fig.8).AtsiteA,Arg105,Asp207,andArg263ofYKL-40 pretedasnegativeofPMFtodecouplethepartners.Thecollagenpeptidesin
questionare1Q7D(atbothsites)and1CAG(atsiteAonly).Thefreeenergyis
interact with Glu(a11), Arg(c12), and Glu(c11) of 1Q7D,
shownasafunctionofnormalizedreactioncoordinate,wherethereaction
respectively,wherethea,b,orcintheparenthesescorresponds coordinateisfractionofnativecontacts.
to one of the three strands of the collagen model. Notably,
Glu(a11),Arg(c12),andGlu(c11)belongtotheGFOGERinteg- staticinteractionenergies;supplementalTableS5),althoughas
rin-bindingmotif.AtsiteB,Lys23ofYKL-40formsasaltbridge aresultofhydrogenbondingratherthansaltbridgeformation.
with Glu(a11) of 1Q7D. As anticipated, the GFOGER motif WenotethattheinteractionenergiesofYKL-40residueswith
playedasubstantialroleintheinteractionofthiscollagenpep- residuesofeachcollagenmodelpeptidearenotconservedasa
tide with YKL-40, but its role was different from that of the resultofdifferencesinthecollagensequences,particularlyin
integrinbindingmechanism,whichfurtherinvolvescoordina- themiddleregionsconsistingofdifferentimino-triplets.
tionofametalion(42).Nevertheless,saltbridgesandhydro- From MD simulation, we observe substantial hydrogen
phobiccontactsareveryimportantinbothcases,significantly bondingbetweenthecollagenpeptidesandYKL-40acrossthe
contributing to the electrostatic component of the binding lengthofeachbindingsite,whichcontributestooverallstabil-
affinity of this collagen peptide relative to collagen peptides ityandbindingaffinity.Thehydrogenbondinganalysisforthe
lackingacidicorbasicaminoacids(e.g.native1CAG)(supple- collagen-YKL-40systemswasperformedasdescribedabovefor
mental Table S5). The hydroxyl oxygens of hydroxyprolines the polysaccharide ligands; pairs exhibiting greater than 10%
from 1CAG and native 1CAG appear to be involved in ionic occupancy over the simulation are reported individually in
interactions with acidic YKL-40 residues (favorable electro- supplemental Table S6. The YKL-40 residues responsible for
FEBRUARY17,2017•VOLUME292•NUMBER7 JOURNALOFBIOLOGICALCHEMISTRY 2633
Description:From the Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506. Edited by Gerald .. alchemical pathway. affinity of this collagen peptide relative to collagen peptides lacking acidic or basic amino acids (e.g. native 1CAG) (supple- mental Table S5).