Table Of ContentFaculty of Agricultural Sciences 
Institute of Crop Science 
Section of Crop Physiology of Specialty Crops 
University of Hohenheim 
 
Prof. Dr. Jens Norbert Wünsche 
 
 
Physiological and molecular mechanisms of fruitlet abscission in mango 
 
 
 
Dissertation submitted in partial fulfilment of the requirements  
for the degree of Doctor of Philosophy 
in Agricultural Science 
 
by 
Michael Helmut Hagemann 
University of Hohenheim 
 
2015
Acknowledgements 
 
I thank Prof. Dr. Wünsche for making this study possible and for his trust in me. His door 
was always open for discussions and I highly appreciate his support on many different 
levels. I am also grateful to Prof. Dr. Asch and to Prof. Dr. Weber for reviewing this thesis.  
 
It always was a friendly and nice working environment in our wing of the castle and I 
thank my colleagues for their valuable suggestions and plenty of technical help. Especially, 
I thank Dr. Winterhagen and Dr. Hegele for their guidance and long discussions on the 
topic and beyond. I also appreciate the support from the four B.Sc. students who partly 
contributed to this thesis, especially M.Sc. Kofler and his committed field work. 
 
I am also grateful for my friends from the Uplands Program. The PhD-time was sometimes 
challenging  but  with  mutual  support  we  overcame  all  obstacles  in  Vietnam  and  in 
Germany. 
 
Special thanks to my loving and lovely family – the importance of a secure, inspiring and 
always exciting childhood cannot be overrated and I am glad that this time is not about to 
end. I thank my wife Sarah for her support and sacrifices. Thank you for your motivation, 
encouragement and for your love. 
 
 
 
 
 
 
This thesis was accepted as a doctoral dissertation in fulfillment of the requirement for the 
degree of “Doktor der Agrarwissenschaften” (Dr. sc. agr.) at the Faculty of Agricultural 
Science at the University of Hohenheim on 19 October 2015. 
 
 
Date of oral examination: 19 October 2015 
 
 
Examination committee 
 
Vice-Dean and Head of the Examination Committee:   Prof. Dr. H. Grethe 
 
Supervisor and reviewer:          Prof. Dr. J. N. Wünsche 
 
Co-reviewer:              Prof. Dr. F. Asch 
 
Additional examiner:           Prof. Dr. G. Weber 
 
   
Page II
Table of contents 
Acknowledgements ............................................................................................................. II 
Table of contents ............................................................................................................... III 
List of figures ................................................................................................................... VII 
List of tables .................................................................................................................... XIII 
List of abbreviations ....................................................................................................... XIV 
1.  Introduction ................................................................................................................ 1 
1.1  Mango .......................................................................................................................... 1 
1.1.1  Origin and botany .................................................................................................................. 1 
1.1.2  Production and cultivation practices ..................................................................................... 2 
1.1.3  Specific features of the study area ......................................................................................... 3 
1.2  General description of premature fruit drop in mango ................................................ 4 
1.2.1  Patterns and intensity ............................................................................................................ 4 
1.2.2  Possible causes and prevention ............................................................................................. 6 
1.3  Mechanism of fruit abscission ..................................................................................... 9 
1.3.1  Morphological changes ......................................................................................................... 9 
1.3.2  Hormonal and molecular control........................................................................................... 9 
1.4  Ethylene perception .................................................................................................... 14 
1.5  Objectives and hypothesis .......................................................................................... 15 
1.6  Publications ................................................................................................................ 16 
2.  A new approach for analyzing and interpreting data on fruit drop in mango .. 17 
2.1  Abstract ...................................................................................................................... 17 
2.2  Introduction ................................................................................................................ 18 
2.3  Material and methods ................................................................................................. 21 
2.3.1  Plant material and experimental sites. ................................................................................. 21 
2.3.2  Environmental parameters. ................................................................................................. 21 
2.3.3  Experimental design and treatments. .................................................................................. 22 
2.3.4  Assessment of fruit drop. .................................................................................................... 23 
2.3.5  Statistical analysis. .............................................................................................................. 24 
2.4  Results ........................................................................................................................ 26 
2.4.1  Assessment of fruit drop. .................................................................................................... 26 
2.4.2  Cropping system evaluation. ............................................................................................... 29 
2.4.3  Irrigation. ............................................................................................................................. 29 
2.4.4  PGR application. ................................................................................................................. 30 
2.5  Discussion .................................................................................................................. 31 
Page III
2.5.1  Fruit drop. ............................................................................................................................ 31 
2.5.2  Climatic factors. .................................................................................................................. 34 
2.5.3  Cropping system.................................................................................................................. 34 
2.5.4  Irrigation. ............................................................................................................................. 34 
2.5.5  PGR. .................................................................................................................................... 35 
2.6  Conclusion ................................................................................................................. 36 
2.7  Notes .......................................................................................................................... 36 
2.8  Literature cited ........................................................................................................... 37 
3.  Ethephon induced abscission of mango fruitlets  ̶  physiological fruit pedicel 
response ..................................................................................................................... 41 
3.1  Abstract ...................................................................................................................... 41 
3.2  Introduction ................................................................................................................ 41 
3.3  Material and methods ................................................................................................. 43 
3.3.1  Plant material ...................................................................................................................... 43 
3.3.2  Fruit and climate measurements .......................................................................................... 43 
3.3.3  Leaf net carbon exchange rate ............................................................................................. 43 
3.3.4  RNA extraction and gene expression analysis by quantitative real-time PCR ................... 43 
3.3.5  Statistical analysis ............................................................................................................... 44 
3.4  Results ........................................................................................................................ 45 
3.4.1  Environmental conditions during natural fruit drop ............................................................ 45 
3.4.2  Leaf net carbon exchange rate ............................................................................................. 46 
3.4.3  Effectiveness of ethephon as fruit drop inducer .................................................................. 46 
3.4.4  Ethylene receptors and their response to ethephon ............................................................. 47 
3.4.5  Fruit detachment force ........................................................................................................ 48 
3.5  Discussion .................................................................................................................. 49 
3.6  Conclusion ................................................................................................................. 50 
3.7  Acknowledgements .................................................................................................... 51 
3.8  References .................................................................................................................. 51 
4.  Ethephon induced abscission in mango: physiological fruitlet responses .......... 53 
4.1  Abstract ...................................................................................................................... 53 
4.2  Introduction ................................................................................................................ 53 
4.3  Materials and methods ............................................................................................... 56 
4.3.1  Plant material and experimental site ................................................................................... 56 
4.3.2  Treatments and experimental design ................................................................................... 56 
4.3.3  Fruitlet drop assessment and sampling ................................................................................ 56 
4.3.4  Gene analysis ...................................................................................................................... 57 
4.3.5  Analysis of soluble carbohydrates ....................................................................................... 59 
4.3.6  Polar auxin transport assay .................................................................................................. 60 
Page IV
4.3.7  Statistical analysis ............................................................................................................... 60 
4.4  Results ........................................................................................................................ 61 
4.4.1  Ethephon induced fruitlet abscission ................................................................................... 61 
4.4.2  Expression of ethylene receptors in the pedicel .................................................................. 62 
4.4.3  Expression of ethylene receptors in the fruitlet pericarp ..................................................... 64 
4.4.4  Polar auxin transport capacity ............................................................................................. 65 
4.4.5  Analysis of soluble carbohydrates ....................................................................................... 66 
4.5  Discussion .................................................................................................................. 67 
4.6  Acknowledgement ..................................................................................................... 72 
4.7  Supplementary material ............................................................................................. 72 
4.7.1  Supplementary figures ........................................................................................................ 72 
4.7.2  Supplementary tables .......................................................................................................... 77 
4.8  References .................................................................................................................. 77 
5.  Expression and dimerisation of the mango ethylene receptor MiETR1 and 
different receptor versions of MiERS1 .................................................................. 81 
5.1  Abstract ...................................................................................................................... 81 
5.2  Introduction ................................................................................................................ 81 
5.3  Material and methods ................................................................................................. 83 
5.3.1  Plant material ...................................................................................................................... 83 
5.3.2  Sequence isolation and characterisation .............................................................................. 84 
5.3.3  Gene expression studies by quantitative real-time PCR ..................................................... 84 
5.3.4  Transient expression in Nicotiana benthamiana ................................................................. 85 
5.4  Results and discussion ............................................................................................... 86 
5.4.1  Sequence isolation and characterisation .............................................................................. 86 
5.4.2  Presence of MiERS1 versions in different mango cultivars ................................................ 89 
5.4.3  Expression analysis by quantitative real-time PCR ............................................................ 89 
5.4.4  Mango ethylene receptor localisation in the plant cell ........................................................ 92 
5.4.5  Co-localisation of mango ethylene receptors ...................................................................... 94 
5.4.6  Dimerisation of MiERS1 and the shorter MiERS1 versions ............................................... 96 
5.4.7  Dimerisation analysis by bi-molecular fluorescence complementation (BiFC) assay ........ 98 
5.4.8  Summary and conclusion .................................................................................................... 99 
5.5  Acknowledgements .................................................................................................. 100 
5.6  Supplementary material ........................................................................................... 100 
5.6.1  Supplementary tables ........................................................................................................ 101 
5.6.2  Supplementary figures ...................................................................................................... 103 
5.7  References ................................................................................................................ 107 
6.  General discussion .................................................................................................. 111 
6.1  The molecular and physiological basis of fruitlet abscission .................................. 111 
Page V
6.2  Linking the theoretical understanding to practical solutions ................................... 116 
6.3  Does it help to explain fruit drop patterns? .............................................................. 118 
6.4  Recommendations for mango production ................................................................ 120 
6.4.1  General recommendations ................................................................................................. 120 
6.4.2  Recommendations specific for the study area ................................................................... 121 
6.5  Conclusion and outlook ........................................................................................... 122 
7.  General references ................................................................................................. 123 
8.  Summary ................................................................................................................. 132 
9.  Zusammenfassung .................................................................................................. 134 
10.  Author’s declaration .............................................................................................. 136 
11.  Curriculum vitae .................................................................................................... 137 
 
Page VI
List of figures 
Fig. 1.1. Photograph series of the fruit of the cultivar ‘Hôi’. (A) ripe fruit, (B) fruit cut open 
exhibiting the yellow mesocarp and seed, (C) seed and (D) embryo after removal of the 
endocarp  and  testa.  The  several  ventrodistally  located  embryos  are  characteristic  for 
polyembryonic cultivars (Arndt, 1935). ................................................................................... 4 
Fig. 1.2. Different ways of presenting fruit drop in mango using the example of the cultivar 
‘Tommy  Atkins’.  Graph  was  reproduced  and  modified  based  on  Nuñez-Elisea  and 
Davenport (1983). Data are presented as (1) the decrease of fruited panicles (straight line, 
black dot), (2) the decrease of fruit retention related to fruited panicles (dashed line, open 
dot), (3) the decrease of fruit retention based on total initial panicles (straight line, open dot), 
(4) and the rate of fruit drop per counting interval (dotted line, star). ..................................... 5 
Fig. 1.3. Scheme of auxin flux in a fruit-bearing panicle of mango. The seed is considered as the 
main source of auxin. Fruitlet 1: Seed degeneration leads to a decreased auxin efflux. This 
enhances the sensitivity of the abscission zone (AZ) to ethylene (Roberts et al., 2002) and 
can possibly also induce the ethylene biosynthesis (Abel et al., 1995), which subsequently 
induces fruitlet abscission. Fruitlet 2: A fruitlet with a healthy seed is able to maintain a 
sufficient auxin gradient that decreases the ethylene-sensitivity at the AZ, consequently the 
fruit persists. Fruitlet 3: The strong auxin efflux from a further developed neighboring fruit 
leads to the accumulation of auxin in the pedicel. This possibly triggers abscission either by 
the auxin transport autoinhibition as proposed by Bangerth (1989) or through inducing the 
ethylene biosynthesis (Abel et al., 1995). Fruitlet 4: The fruitlet has sufficient auxin efflux 
and persists at the panicle. ..................................................................................................... 10 
Fig. 1.4. Model for fruitlet abscission modified after Xie et al. (2011) considering Chen et al. 
(2005) and Dal Cin et al. (2007, 2009). Ethylene is catalyzed from methionine by the 
1-aminocyclopropane-1-carboxylic  acid  (ACC)  synthase  (ACS)  and  the  ACC  oxidase 
(ACO). The ACS activity can be modulated by auxin, gibberellins (GA), abscisic acid 
(ABA),  polyamines  (PA)  or  others.  In  the  absence  of  ethylene  the  ethylene  receptors 
maintain the CONSTITUTIVE TRIPLE RESPONSE 1 (CTR1) protein kinase in an active 
state. The active CTR1 inhibits the ETHYLEN INSENSITIVE-2 (EIN2) signal protein. 
Ethylene perception leads to a conformational change that inactivate CTR1, which in turn 
induced the EIN2 transcription factors. EIN2 further induces EIN3 and EIN3-like (EIL), 
which than induce the activity of transcription factors of the ETHYLENE RESPONSE 
FACTOR (ERF) family in the nucleus. The ERFs lead to the upregulation of genes of the 
ethylene signaling, which promotes the ethylene response, while the auxin signaling is 
downregulated. In the following, the ERFs induce cell-wall degrading enzymes, which 
finally leads to the detachment of the fruitlet and subsequently to the drop of the fruitlet. ... 13 
Page VII
Fig. 2.1. (A) Average fruit retention per panicle (FPP) of ‘Hôi’ (closed symbols) and ‘Tròn’ (open 
symbols) in days after full bloom (DAFB). Each symbol refers to years between 2007 and 
2012 and is based on actual fruit counts per panicle. Average fruit retention over that period 
is also modeled with a sigmoid function (r2 = 0.85). y  is the final fruit retention, whereas 
0
y +a determines the upper limit of FPP. (B) Slope of the simulated fruit drop curve and the 
0
calculated  daily  rate  of  fruit  drop  FD(x).  Black  arrows  indicate  x ,  FD ,  and  FD , 
0 max mst
corresponding with the highest daily fruit losses in absolute terms, the highest FD(x), and the 
cessation of midseason fruit drop, respectively. .................................................................... 27 
Fig. 2.2. Daily rate of fruit drop in six consecutive growing seasons. Gray lines indicate the fruit 
drop waves by cultivar ‘Hôi’. ................................................................................................ 29 
Fig.  3.1.  Average  maximum  and  minimum  temperature  during  the  flowering  and  early  fruit 
development period in 2010. Black dots indicate fruit counts of control treatments starting 
one week after full bloom (7 February 2010). Error bars indicate SEM. .............................. 45 
Fig. 3.2. Net carbon exchange rate (NCER) and stomatal conductance (SC) at four temperatures 
during flowering in 2010. ...................................................................................................... 46 
Fig. 3.3. Fruit retention during early fruit development in 2010 with application of Ethephon and 
control treatments at an early (arrow 1) and a late application date (arrow 2). Error bars 
represent SEM. ....................................................................................................................... 47 
Fig. 3.4. Alignment of partial ETR1 and ERS1-like protein sequences with indicated homology 
relative to the Arabidopsis sequence. ..................................................................................... 48 
Fig. 3.5. Results of FDF measurements from the first experiment. Average FDF is shown at 2 days 
before and 1, 3 and 5 days after application of Ethephon and control treatments. ................ 49 
Fig. 4.1. The effect of the ethephon treatment 600 ppm (ET600) or 7200 ppm (ET7200) spray 
applications  on  average  (A)  fruitlet  retention,  (B)  fruitlet  detachment  force  of  fruitlets 
detaching at the abscission zone or along the pedicel, (C) percentage of fruitlet detachment at 
the abscission zone (the remainder to 100% are fruitlets detaching along the pedicel) and (D) 
seed  degeneration  in  comparison  to  the  control  and  two  days  prior  to  treatment.  (A) 
Horizontal black bar indicates time until 95% of the fruits have abscised in response to 
ET7200. (B) Homogeneous subgroups with no significant difference (p ≤ 0.05) are indicated 
by same letters (a or b). Error bars show standard deviation. ................................................ 62 
Fig. 4.2. Expression of the ethylene receptors (A) MiETR1 and (B) MiERS1 in the pedicel of pea 
sized mango fruitlets in response to the ethephon treatment 600 ppm (ET600) and 7200 ppm 
(ET7200) in comparison to the control and two days prior to treatment. Homogeneous 
subgroups with no significant difference (p ≤ 0.05) are indicated by same letters (a,b or c). 
Error bars show standard deviation. ....................................................................................... 63 
Page VIII
Fig.  4.3.  Detection  of  transcription  of  the  ethylene  receptor  versions  (A)  MiERS1m  and 
(B) MiERS1s  in  the  pedicel  of  pea  sized  mango  fruitlets  in  response  to  the  ethephon 
treatment 600 ppm (ET600) and 7200 ppm (ET7200) in comparison to the control and two 
days prior to treatment. .......................................................................................................... 64 
Fig. 4.4. Expression of the ethylene receptors (A) MiETR1and (B) MiERS1 in the pericarp of pea 
sized mango fruitlets in response to the ethephon treatment 600 ppm (ET600) and 7200 ppm 
(ET7200) in comparison to the control and two days prior to treatment. Homogeneous 
subgroups with no significant difference (p ≤ 0.05) are indicated by same letters (a or b). 
Error bars show standard deviation. ....................................................................................... 65 
Fig. 4.5. Polar auxin transport (PAT) capacity through the pedicel of pea sized fruitlets. Detection 
of [3H]-IAA in the receiver block in response to the ethephon treatment with 600 ppm 
(ET600)  or  7200 ppm  (ET7200)  in  comparison  to  the  control  and  two  days  prior  to 
treatment. Homogeneous subgroups with no significant difference (p ≤ 0.05) are indicated by 
same letters (a or b). Error bars show standard deviation; dpm = disintegrations per minute. 
1sample size (n=3) was too small to perform a statistical test. ............................................... 66 
Fig. 4.6. Sucrose concentration of pea sized fruitlets after the ethephon treatment 600 ppm (ET600) 
or  7200 ppm  (ET7200)  in  comparison  to  the control  and  two  days  prior to  treatment. 
Homogeneous subgroups with no significant difference (p ≤ 0.05) are indicated by same 
letters (a or b). Error bars show standard deviation. .............................................................. 67 
Fig. 4.7. Overview of the key fruitlet abscission parameters analyzed in this study. Parameters of 
ethephon treated fruitlets compared to those of control fruitlets: no significant differences are 
indicated  by  a  dot,  whereas  up-  or  downward  pointing  arrows  indicate  significant 
differences. Different or equal response of the ethephon treatments 600 ppm (ET600) and 
7200 ppm (ET7200) in comparison to the control are indicated by orange and cyan colored 
symbols, respectively. The parameters are: fruitlet detachment force (FDF), gene expression 
of the ethylene receptors MiERS1 and MiETR1 and their ratios in the pedicel and fruit 
pericarp, polar auxin transport (PAT), and the concentration of sucrose in the fruit pericarp.
 ............................................................................................................................................... 71 
Fig. 4.S1. The effect of ethephon treatment 7200 ppm (ET7200) on average (A) fruitlet detachment 
force of fruitlets detaching at the abscission zone or along the pedicel and (B) percentage of 
fruitlet detachment at the abscission zone (the remainder to 100% are fruitlets detaching 
along the pedicel) in comparison to the control and one day prior to treatment. Error bars 
show standard deviation. Data from 2011. ............................................................................ 72 
Fig. 4.S2. Expression of the ethylene receptors (A) MiETR1 and (B) MiERS1 in the pedicel of pea 
sized  mango  fruitlets  in  response  to  the  ethephon  treatment  7200 ppm  (ET7200)  in 
comparison to the control and one day prior to treatment. Homogeneous subgroups with no 
Page IX
significant difference (p ≤ 0.05) are indicated by same letters (a or b). Error bars show 
standard deviation. Data from 2011. ...................................................................................... 73 
Fig. 4.S3. Expression of short versions of the MiERS1. (A) MiERS1m and (B) MiERS1s in the 
pedicel of pea sized mango fruitlets in response to the ethephon treatments 600 ppm (ET600) 
or 7200 ppm (ET7200) in comparison to the control and two days prior to treatment. No 
statistical test possible due to highly variable sample size. Missing error bar indicates n=1. 
Data from 2012. ..................................................................................................................... 74 
Fig. 4.S4. Expression analysis of (A) MiETR1 and (B) MiERS1 in the pericarp of pea sized fruitlets 
in response to the ethephon treatment 7200 ppm (ET7200) in comparison to the control and 
one day prior to treatment. Homogeneous subgroups with no significant difference (p ≤ 0.05) 
are indicated by same letters (a or b). Error bars show standard deviation. Data from 2011. 75 
Fig. 4.S5. Accumulated [3H]-IAA in the receiver after the ethephon treatment 7200 ppm (ET7200) 
in comparison to the control and two days prior to treatment. Homogeneous subgroups with 
no significant difference (p ≤ 0.05) are indicated by same letters (a or b). Error bars show 
standard deviation; dpm = disintegrations per minute. Data from 2011. ............................... 76 
Fig.  4.S6.  Concentrations  of  fructose  and  glucose  of  pea  sized  fruitlets  after  the  ethephon 
treatments 600 ppm (ET600) or 7200 ppm (ET7200) in comparison to the control and two 
days prior to treatment. Homogeneous subgroups with no significant difference (p ≤ 0.05) 
are indicated by same letters (a or b). Error bars show standard deviation. Data from 2012. 76 
Fig. 5.1. MiERS1 is expressed in three versions. (A) Structure and domains of the isolated MiERS1 
versions. Domains are boxed in grey, broken line indicate gap in sequence, SNPs and their 
positions are indicated. Numbers indicate position or sequence length in nucleotides (nt) or 
amino acids (aa). TM: transmembrane domains, GAF: GAF domain, K: histidine kinase 
domain, ATP: ATP-binding domain. (B) Alignment of translated cDNA sequences. Numbers 
indicate  sequence  length  in  amino  acids.  (C)  Genomic  sequence  structure  of  MiERS1 
versions. Boxes indicate exons and thin lines indicate introns, numbers indicate size of 
introns in nucleotides. ............................................................................................................ 87 
Fig. 5.2. Expression analysis by qPCR of MiETR1 and the MiERS1 versions. Means of the level of 
receptor transcripts in different mango organs and developmental stages relative to a linker 
sample. MiETR1 (A) and MiERS1 (B) are present in 100% of the samples; occurrence of 
MiERS1m (C) and MiERS1s (D) in all samples is indicated as percent in relation to tested 
cDNAs. Expression values of MiERS1m and MiERS1s refer to samples with detectable 
expression. Bars indicate standard deviation, except for (C) MiERS1m, marble pedicel due to 
sample size n = 1. ................................................................................................................... 90 
Fig. 5.3. Analysis of localisation of MiETR1 and the MiERS1 versions by transient expression in 
infiltrated N. benthamiana leaves. Co-expression of MiETR1 (A) and MiERS1 version YFP-
Page X
Description:Ethephon induced abscission of mango fruitlets ̶ physiological fruit pedicel response . 5.4.7 Dimerisation analysis by bi-molecular fluorescence complementation (BiFC) assay .. 98. 5.4.8 Summary  commonly used for enhancing fruit retention in many perennial fruit crops, including mango.