Table Of ContentC.N.R.Rao,A.Mu¨ller,
A.K.Cheetham(Eds.)
TheChemistryof
Nanomaterials
TheChemistryofNanomaterials:Synthesis,PropertiesandApplications.EditedbyC.N.R.Rao,
A.Mu¨ller,A.K.Cheetham
Copyright82004WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim
ISBN:3-527-30686-2
Further Titles of Interest
G.Schmid(Ed.)
Nanoparticles
FromTheorytoApplication
2004
ISBN3-527-30507-6
V.Balzani,A.Credi,M.Venturi
Molecular Devices and Machines
AJourneyintotheNanoworld
2003
ISBN3-527-30506-8
M.Driess,H.No€th(Eds.)
Molecular Clusters of the Main Group Elements
2004
ISBN3-527-30654-4
G.Hodes(Ed.)
Electrochemistry of Nanomaterials
2001
ISBN3-527-29836-3
U.Schubert,N.Hu€sing
Synthesis of Inorganic Materials
2000
ISBN3-527-29550-X
C. N. R. Rao, A. Mu¨ller, A. K. Cheetham (Eds.)
The Chemistry of Nanomaterials
Synthesis, Properties and Applications in 2 Volumes
Volume 1
Prof.Dr.C.N.R.Rao 9 Thisbookwascarefullyproduced.
CSIRCentreofExcellenceinChemistry Nevertheless,authors,editorsandpublisher
andChemistryandPhysicsofMaterials donotwarranttheinformationcontained
Unit thereintobefreeoferrors.Readersare
JawaharlalNehruCentreforAdvanced advisedtokeepinmindthatstatements,
ScientificResearch data,illustrations,proceduraldetailsor
JakkurP.O. otheritemsmayinadvertentlybe
Bangalore–560064 inaccurate.
India
LibraryofCongressCardNo.:appliedfor
Prof.Dr.h.c.mult.AchimMu¨ller Acataloguerecordforthisbookisavailable
FacultyofChemistry fromtheBritishLibrary.
UniversityofBielefeld BibliographicinformationpublishedbyDie
Postfach100131 DeutscheBibliothek
D-33501Bielefeld DieDeutscheBibliothekliststhis
Germany publicationintheDeutscheNational-
bibliografie;detailedbibliographicdatais
Prof.Dr.A.K.Cheetham availableintheInternetathttp://dnb.ddb.de
Director
MaterialsResearchLaboratory (2004WILEY-VCHVerlagGmbH&Co.
UniversityofCalifornia,SantaBarbara KgaA,Weinheim
SantaBarbara,CA93106 Allrightsreserved(includingthoseof
USA translationinotherlanguages).Nopartof
thisbookmaybereproducedinanyform–
byphotoprinting,microfilm,oranyother
means–nortransmittedortranslatedinto
machinelanguagewithoutwritten
permissionfromthepublishers.Registered
names,trademarks,etc.usedinthisbook,
evenwhennotspecificallymarkedassuch,
arenottobeconsideredunprotectedbylaw.
PrintedintheFederalRepublicof
Germany.
Printedonacid-freepaper.
Composition AscoTypesetters,HongKong
Printing betz-druckgmbh,Darmstadt
¨
Bookbinding J.SchafferGmbH&Co.KG,
¨
Grunstadt
ISBN 3-527-30686-2
v
Contents
Preface xvi
ListofContributors xviii
Volume1
1 Nanomaterials–AnIntroduction 1
C.N.R.Rao,A.Mu¨ller,andA.K.Cheetham
1.1 SizeEffects 3
1.2 SynthesisandAssembly 4
1.3 Techniques 5
1.4 ApplicationsandTechnologyDevelopment 8
1.5 Nanoelectronics 8
1.6 OtherAspects 9
1.7 ConcludingRemarks 11
Bibliography 11
2 StrategiesfortheScalableSynthesisofQuantumDotsand
RelatedNanodimensionalMaterials 12
P.O’BrienandN.Pickett
2.1 Introduction 12
2.2 DefiningNanodimensionalMaterials 13
2.3 PotentialUsesforNanodimensionalMaterials 15
2.4 TheGeneralMethodsAvailablefortheSynthesisofNanodimensional
Materials 17
2.4.1 PrecipitativeMethods 19
2.4.2 ReactiveMethodsinHighBoilingPointSolvents 20
2.4.3 HydrothermalandSolvothermalMethods 22
2.4.4 Gas-PhaseSynthesisofSemiconductorNanoparticles 23
2.4.5 SynthesisinaStructuredMedium 24
2.5 TheSuitabilityofSuchMethodsforScaling 25
2.6 ConclusionsandPerspectivesontheFuture 26
Acknowledgements 27
References 27
TheChemistryofNanomaterials:Synthesis,PropertiesandApplications.EditedbyC.N.R.Rao,
A.Mu¨ller,A.K.Cheetham
Copyright82004WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim
ISBN:3-527-30686-2
vi Contents
3 MovingNanoparticlesAround:Phase-TransferProcessesinNanomaterials
Synthesis 31
M.Sastry
3.1 Introduction 31
3.2 Water-BasedGoldNanoparticleSynthesis 33
3.2.1 Advantages 33
3.2.2 Disadvantages 33
3.3 OrganicSolution-BasedSynthesisofGoldNanoparticles 33
3.3.1 Advantages 33
3.3.2 Disadvantages 34
3.4 MovingGoldNanoparticlesAround 34
3.4.1 PhaseTransferofAqueousGoldNanoparticlestoNon-PolarOrganic
Solvents 34
3.4.2 TransferofOrganicallySolubleGoldNanoparticlestoWater 43
Acknowledgments 48
References 49
4 MesoscopicAssemblyandOtherPropertiesofMetalandSemiconductor
Nanocrystals 51
G.U.Kulkarni,P.J.Thomas,andC.N.R.Rao
Abstract 51
4.1 Introduction 51
4.2 SyntheticStrategies 53
4.2.1 GeneralMethods 53
4.2.2 SizeControl 55
4.2.3 ShapeControl 57
4.2.4 TailoringtheLigandShell 58
4.3 ProgrammedAssemblies 61
4.3.1 One-DimensionalArrangements 61
4.3.2 Two-DimensionalArrays 62
4.3.2.1 ArraysofMetalNanocrystals 63
4.3.2.2 ArraysofSemiconductorNanocrystals 65
4.3.2.3 ArraysofOxideNanocrystals 66
4.3.2.4 OtherTwo-DimensionalArrangements 68
4.3.2.5 StabilityandPhaseBehaviourofTwo-DimensionalArrays 68
4.3.3 Three-DimensionalSuperlattices 71
4.3.4 Superclusters 73
4.3.5 ColloidalCrystals 75
4.3.6 NanocrystalPatterning 75
4.4 EmergingApplications 77
4.4.1 IsolatedNanocrystals 78
4.4.2 CollectiveProperties 82
4.4.3 Nanocomputing 86
4.5 Conclusions 86
References 88
Contents vii
5 OxideNanoparticles 94
R.Seshadri
Abstract 94
5.1 Introduction 94
5.2 MagnetiteParticlesinNature 96
5.3 RoutesforthePreparationofIsolatedOxideNanoparticles 98
5.3.1 Hydrolysis 98
5.3.2 Oxidation 101
5.3.3 Thermolysis 102
5.3.4 Metathesis 103
5.3.5 SolvothermalMethods 105
5.3.5.1 Oxidation 105
5.3.5.2 Hydrolysis 105
5.3.5.3 Thermolysis 106
5.4 Prospects 108
Acknowledgments 110
References 110
6 SonochemistryandOtherNovelMethodsDevelopedfortheSynthesisof
Nanoparticles 113
Y.MastaiandA.Gedanken
Abstract 113
6.1 Sonochemistry 113
6.1.1 SonochemicalFabricationofNanometals 116
6.1.1.1 SonochemicalSynthesisofPowdersofMetallicNanoparticles 116
6.1.1.2 SonochemicalSynthesisofMetallicColloids 118
6.1.1.3 SonochemicalSynthesisofMetallicAlloys 120
6.1.1.4 SonochemicalDepositionofNanoparticlesonSphericalandFlat
Surfaces 121
6.1.1.5 SonochemicalSynthesisofaPolymer-MetalComposite 124
6.1.1.6 SonochemicalSynthesisofNanometalsEncapsulatedinaCarbon
Matrix 127
6.1.2 SonochemicalFabricationofNano-MetallicOxides 129
6.1.2.1 SonochemicalSynthesisofTransitionMetalOxidesfromthe
CorrespondingCarbonyls 129
6.1.2.2 SonochemicalSynthesisofFerritesfromtheCorresponding
Carbonyls 131
6.1.2.3 SonochemicalPreparationofNanosizedRare-EarthOxides 133
6.1.2.4 TheSonohydrolysisofGroup3ACompounds 134
6.1.2.5 TheSonochemicalSynthesisofNanostructuredSnO andSnOastheir
2
UseasElectrodeMaterials 136
6.1.2.6 TheSonochemicalSynthesisofMesoporousMaterialsandtheInsertion
ofNanoparticlesintotheMesoporesbyUltrasoundRadiation 137
6.1.2.7 TheSonochemicalSynthesisofMixedOxides 143
6.1.2.8 TheSonochemicalSynthesisofNanosizedHydroxides 143
viii Contents
6.1.2.9 SonochemicalPreparationofNanosizedTitania 144
6.1.2.10 TheSonochemicalPreparationofOtherOxides 145
6.1.2.11 SonochemicalSynthesisofOtherNanomaterials 147
6.2 Sonoelectrochemistry 148
6.2.1 SonoelectrochemicalSynthesisofNanocrystallineMaterials 149
6.3 MicrowaveHeating 152
6.3.1 MicrowaveSynthesisofNanomaterials 155
6.3.1.1 MicrowaveSynthesisofNanometallicParticles 155
6.3.1.2 TheSynthesisofNanoparticlesofMetalOxidesbyMWH 157
Acknowledgements 163
References 164
7 SolvothermalSynthesisofNon-OxideNanomaterials 170
Y.T.Qian,Y.L.Gu,andJ.Lu
7.1 Introduction 170
7.2 SolvothermalSynthesisofIII–VNanomaterials 175
7.3 SynthesisofDiamond,CarbonNanotubesandCarbides 181
7.4 SynthesisofSi3N4,P3N5,MetalNitridesandPhosphides 186
7.5 SynthesisofBN,B4C,BPandBorides 189
7.6 SynthesisofOne-DimensionalMetalChalcogenideNanocrystallites 193
7.7 RoomTemperatureSynthesisofNanomaterials 198
References 204
8 NanotubesandNanowires 208
A.GovindarajandC.N.R.Rao
Abstract 208
8.1 Introduction 208
8.2 CarbonNanotubes 210
8.2.1 Synthesis 210
8.2.1.1 Multi-WalledNanotubes 210
8.2.1.2 AlignedCarbonNanotubeBundles 212
8.2.1.3 Single-WalledCarbonNanotubes 214
8.2.2 StructureandCharacterization 217
8.2.3 MechanismofFormation 222
8.2.4 ChemicallyModifiedCarbonNanotubes 224
8.2.4.1 DopingwithBoronandNitrogen 224
8.2.4.2 Opening,FillingandFunctionalizingNanotubes 225
8.2.5 ElectronicStructure,PropertiesandDevices 227
8.2.5.1 ElectronicStructureandProperties 227
8.2.5.2 ElectronicandElectrochemicalDevices 228
8.3 InorganicNanotubes 239
8.3.1 Preliminaries 239
8.3.2 GeneralSyntheticStrategies 244
8.3.3 Structures 246
8.3.4 UsefulPropertiesofInorganicNanotubes 253
Contents ix
8.4 Nanowires 255
8.4.1 Preliminaries 255
8.4.2 SyntheticStrategies 255
8.4.2.1 VaporPhaseGrowthofNanowires 256
8.4.2.2 OtherProcessesintheGasPhase 262
8.4.2.3 Solution-BasedGrowthofNanowires 265
8.4.2.4 GrowthControl 273
8.4.3 PropertiesofNanowires 274
References 275
9 Synthesis,AssemblyandReactivityofMetallicNanorods 285
C.J.Murphy,N.R.Jana,L.A.Gearheart,S.O.Obare,K.K.Caswell,
S.Mann,C.J.Johnson,S.A.Davis,E.Dujardin,andK.J.Edler
9.1 Introduction 285
9.2 Seed-MediatedGrowthApproachtotheSynthesisofInorganicNanorods
andNanowires 287
9.3 AssemblyofMetallicNanorods:Self-Assemblyvs.DesignedChemical
Linkages 293
9.4 ReactivityofMetallicNanoparticlesDependsonAspectRatio 299
9.5 ConclusionsandFutureProspects 304
Acknowledgements 306
References 306
10 Oxide-AssistedGrowthofSiliconandRelatedNanowires:
GrowthMechanism,StructureandProperties 308
S.T.Lee,R.Q.Zhang,andY.Lifshitz
Abstract 308
10.1 Introduction 309
10.2 Oxide-AssistedNanowireGrowth 311
10.2.1 DiscoveryofOxide-AssistedGrowth 311
10.2.2 Oxide-AssistedNucleationMechanism 314
10.2.3 Oxide-AssistedGrowthMechanism 316
10.2.4 ComparisonbetweenMetalCatalystVLSGrowthandOAG 317
10.3 ControlofSiNWNanostructuresinOAG 319
10.3.1 MorphologyControlbySubstrateTemperature 319
10.3.2 DiameterControlofNanowires 326
10.3.3 Large-AreaAlignedandLongSiNWsviaFlowControl 328
10.3.4 SiNanoribbons 330
10.4 NanowiresofSiCompoundsbyMultistepOxide-AssistedSynthesis 332
10.4.1 Nanocables 332
10.4.2 MetalSilicide/SiNWsfromMetalVaporVacuumArcImplantation 333
10.4.3 SynthesisofOrientedSiCNanowires 334
10.5 ImplementationofOAGtoDifferentSemiconductingMaterials 335
10.6 ChemicalPropertiesofSiNWs 340
10.6.1 StabilityofH-TerminatedSiNWSurfaces 340
x Contents
10.6.2 ReductionofMetalsinLiquidSolutions 343
10.6.3 ChemicalSensingofSiNWs 345
10.6.4 UseofSiNWsasTemplatesforNanomaterialGrowth 346
10.7 OpticalandElectricalPropertiesofSiNWs 347
10.7.1 RamanandPLofSiNWs 347
10.7.2 FieldEmissionfromDifferentSi-BasedNanostructures 350
10.7.3 STMandSTSMeasurementsofSiNWsandB-DopedSiNWs 351
10.7.4 PeriodicArrayofSiNWHeterojunctions 356
10.8 Modeling 359
10.8.1 HighReactivityofSiliconSuboxideVapor 359
10.8.2 ThermalandChemicalStabilitiesofPureSiliconNanostructured
Materials 360
10.8.2.1 StructuralTransitioninSiliconNanostructures 360
10.8.2.2 ThinnestStableShortSiliconNanowires 361
10.8.2.3 SiliconNanotubes 361
10.8.3 ThermalandChemicalStabilitiesofHydrogenatedSilicon
Nanostructures 363
10.8.3.1 StructuralPropertiesofHydrogenatedSiliconNanocrystalsand
Nanoclusters 363
10.8.3.2 Size-DependentOxidationofHydrogenatedSiliconClusters 365
10.9 Summary 365
Acknowledgement 368
References 369
Volume2
11 ElectronicStructureandSpectroscopyofSemiconductorNanocrystals 371
S.SapraandD.D.Sarma
11.1 Introduction 371
11.2 StructuralTransformations 372
11.3 Ultraviolet–VisibleAbsorptionSpectroscopy 374
11.4 FluorescenceSpectroscopy 377
11.5 ElectronicStructureCalculations 383
11.5.1 EffectiveMassApproximation 384
11.5.2 EmpiricalPseudopotentialMethod 385
11.5.3 Tight-BindingMethod 387
11.6 PhotoemissionStudies 394
11.6.1 CoreLevelPhotoemission 395
11.6.2 ValenceBandPhotoemission 399
11.7 ConcludingRemarks 401
References 402
12 Core–ShellSemiconductorNanocrystalsforBiologicalLabeling 405
R.E.BaileyandS.Nie
12.1 Introduction 405
Description:Department of Inorganic and Physical. Chemistry. Indian Institute of Science. Bangalore 560 012. India. S. Sapra. Solid State and Structural Chemistry Unit. Indian Institute of Science. Bangalore-560012. India. D. D. Sarma. Solid State and Structural Chemistry Unit and Centre for Condensed Matter