Table Of ContentChemicalProcessDesignand
Simulation
Chemical Process Design and
Simulation
AspenPlusandAspenHYSYSApplications
JumaHaydary
DepartmentofChemicalandBiochemicalEngineering
SlovakUniversityofTechnology
Bratislava,Slovakia
Thiseditionfirstpublished2019
©2019JohnWiley&Sons,Inc.
AJointPublicationoftheAmericanInstituteofChemicalEngineersandJohnWiley&Sons,Inc.
Allrightsreserved.Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,ortransmitted,inanyformorbyanymeans,
electronic,mechanical,photocopying,recordingorotherwise,exceptaspermittedbylaw.Adviceonhowtoobtainpermissiontoreusematerial
fromthistitleisavailableathttp://www.wiley.com/go/permissions.
TherightofJumaHaydarytobeidentifiedastheauthorofthisworkhasbeenassertedinaccordancewithlaw.
RegisteredOffice
JohnWiley&Sons,Inc.,111RiverStreet,Hoboken,NJ07030,USA
EditorialOffice
111RiverStreet,Hoboken,NJ07030,USA
Fordetailsofourglobaleditorialoffices,customerservices,andmoreinformationaboutWileyproductsvisitusatwww.wiley.com.
Wileyalsopublishesitsbooksinavarietyofelectronicformatsandbyprint-on-demand.Somecontentthatappearsinstandardprintversionsof
thisbookmaynotbeavailableinotherformats.
LimitofLiability/DisclaimerofWarranty
Inviewofongoingresearch,equipmentmodifications,changesingovernmentalregulations,andtheconstantflowofinformationrelatingtothe
useofexperimentalreagents,equipment,anddevices,thereaderisurgedtoreviewandevaluatetheinformationprovidedinthepackageinsertor
instructionsforeachchemical,pieceofequipment,reagent,ordevicefor,amongotherthings,anychangesintheinstructionsorindicationof
usageandforaddedwarningsandprecautions.Whilethepublisherandauthorshaveusedtheirbesteffortsinpreparingthiswork,theymakeno
representationsorwarrantieswithrespecttotheaccuracyorcompletenessofthecontentsofthisworkandspecificallydisclaimallwarranties,
includingwithoutlimitationanyimpliedwarrantiesofmerchantabilityorfitnessforaparticularpurpose.Nowarrantymaybecreatedorextended
bysalesrepresentatives,writtensalesmaterialsorpromotionalstatementsforthiswork.Thefactthatanorganization,website,orproductis
referredtointhisworkasacitationand/orpotentialsourceoffurtherinformationdoesnotmeanthatthepublisherandauthorsendorsethe
informationorservicestheorganization,website,orproductmayprovideorrecommendationsitmaymake.Thisworkissoldwiththe
understandingthatthepublisherisnotengagedinrenderingprofessionalservices.Theadviceandstrategiescontainedhereinmaynotbesuitable
foryoursituation.Youshouldconsultwithaspecialistwhereappropriate.Further,readersshouldbeawarethatwebsiteslistedinthisworkmay
havechangedordisappearedbetweenwhenthisworkwaswrittenandwhenitisread.Neitherthepublishernorauthorsshallbeliableforanyloss
ofprofitoranyothercommercialdamages,includingbutnotlimitedtospecial,incidental,consequential,orotherdamages.
LibraryofCongressCataloging-in-PublicationDataisavailable.
HardbackISBN:9781119089117
CoverDesign:Wiley
CoverImage:©evryka/Shutterstock
Setin10/12ptWarnockProbyAptaraInc.,NewDelhi,India
10 9 8 7 6 5 4 3 2 1
Tomymother,toZuzana,andtoSebastianandSabina
vii
Contents
ListofTables xiii
ListofFigures xvii
Abouttheauthor xxv
Preface xxvii
Acknowledgments xxix
Abbreviations xxxi
Symbols xxxiii
AbouttheCompanionWebsite xliii
PartI IntroductiontoDesignandSimulation 1
1 IntroductiontoComputer-AidedProcessDesignandSimulation 3
1.1 ProcessDesign 3
1.2 ProcessChemistryConcept 4
1.3 TechnologyConcept 5
1.4 DataCollection 6
1.4.1 MaterialPropertiesData 6
1.4.2 PhaseEquilibriumData 6
1.4.3 ReactionEquilibriumandReactionKineticData 6
1.5 SimulationofanExistingProcess 6
1.6 DevelopmentofProcessFlowDiagrams 7
1.7 ProcessSimulationPrograms 7
1.7.1 SequentialModularversusEquation-OrientedApproach 9
1.7.2 StartingaSimulationwithAspenPlus 10
1.7.3 StartingaSimulationwithAspenHYSYS 11
1.8 ConventionalversusNonconventionalComponents 11
1.9 ProcessIntegrationandEnergyAnalysis 14
1.10 ProcessEconomicEvaluation 14
References 14
2 GeneralProcedureforProcessSimulation 15
2.1 ComponentSelection 15
2.2 PropertyMethodsandPhaseEquilibrium 25
2.2.1 PhysicalPropertyDataSources 25
2.2.2 PhaseEquilibriumModels 27
2.2.3 SelectionofaPropertyMethodinAspenPlus 31
2.2.4 SelectionofaPropertyPackageinAspenHYSYS 35
2.2.5 PureComponentPropertyAnalysis 36
2.2.6 BinaryAnalysis 38
2.2.7 AzeotropeSearchandAnalysisofTernarySystems 44
2.2.8 PTEnvelopeAnalysis 47
viii Contents
2.3 ChemistryandReactions 48
2.4 ProcessFlowDiagrams 53
References 58
PartII DesignandSimulationofSingleUnitOperations 61
3 HeatExchangers 63
3.1 HeaterandCoolerModels 63
3.2 SimpleHeatExchangerModels 66
3.3 SimpleDesignandRatingofHeatExchangers 69
3.4 DetailedDesignandSimulationofHeatExchangers 72
3.4.1 HYSYSDynamicRating 74
3.4.2 RigorousShellandTubeHeatExchangerDesignUsingEDR 76
3.5 SelectionandCostingofHeatExchangers 77
References 82
4 PressureChangingEquipment 85
4.1 Pumps,HydraulicTurbines,andValves 85
4.2 CompressorsandGasTurbines 88
4.3 PressureDropCalculationsinPipes 92
4.4 SelectionandCostingofPressureChangingEquipment 97
References 99
5 Reactors 101
5.1 MaterialandEnthalpyBalanceofaChemicalReactor 101
5.2 StoichiometryandYieldReactorModels 101
5.3 ChemicalEquilibriumReactorModels 106
5.3.1 REquilModelofAspenPlus 108
5.3.2 EquilibriumReactorModelofAspenHYSYS 108
5.3.3 RGibbsModelofAspenPlusandGibbsReactorModelofAspenHYSYS 109
5.4 KineticReactorModels 110
5.5 SelectionandCostingofChemicalReactors 122
References 124
6 SeparationEquipment 125
6.1 SingleContactPhaseSeparation 125
6.2 DistillationColumn 127
6.2.1 ShortcutDistillationMethod 128
6.2.2 RigorousMethods 131
6.3 AzeotropicandExtractiveDistillation 136
6.4 ReactiveDistillation 141
6.5 AbsorptionandDesorption 145
6.6 Extraction 148
6.7 SelectionandCostingofSeparationEquipment 150
6.7.1 DistillationEquipment 150
6.7.2 AbsorptionEquipment 151
6.7.3 ExtractionEquipment 152
References 153
7 SolidHandling 155
7.1 Dryer 155
7.2 Crystallizer 160
7.3 Filter 162
Contents ix
7.4 Cyclone 163
7.5 SelectionandCostingofSolidHandlingEquipment 166
References 167
Exercises–PartII 168
PartIII PlantDesignandSimulation:ConventionalComponents 173
8 SimpleConceptDesignofaNewProcess 175
8.1 AnalysisofMaterialsandChemicalReactions 175
8.1.1 EthylAcetateProcess 175
8.1.2 StyreneProcess 176
8.2 SelectionofTechnology 176
8.2.1 EthylAcetateProcess 176
8.2.2 StyreneProcess 177
8.3 DataAnalysis 180
8.3.1 PureComponentPropertyAnalysis 180
8.3.2 ReactionKineticandEquilibriumData 181
8.3.3 PhaseEquilibriumData 185
8.4 StartingAspenSimulation 188
8.4.1 EthylAcetateProcess 188
8.4.2 StyreneProcess 188
8.5 ProcessFlowDiagramandPreliminarySimulation 188
8.5.1 EthylAcetateProcess 188
8.5.2 StyreneProcess 193
References 200
9 ProcessSimulationinanExistingPlant 203
9.1 AnalysisofProcessSchemeandSynthesesofaSimulationScheme 203
9.2 ObtainingInputDatafromtheRecordsofProcessOperationandTechnologicalDocumentation 205
9.3 PropertyMethodSelection 206
9.4 SimulatorFlowDiagram 207
9.5 SimulationResults 208
9.6 ResultsEvaluationandComparisonwithReal-DataRecorded 208
9.7 ScenariosforSuggestedChangesandTheirSimulation 211
References 214
10 MaterialIntegration 215
10.1 MaterialRecyclingStrategy 215
10.2 MaterialRecyclinginAspenPlus 216
10.3 MaterialRecyclinginAspenHYSYS 219
10.4 RecyclingRatioOptimization 223
10.5 SteamRequirementSimulation 230
10.6 CoolingWaterandOtherCoolantsRequirementSimulation 232
10.7 GasFuelRequirementSimulation 233
References 237
11 EnergyIntegration 239
11.1 EnergyRecoverySimulationbyAspenPlus 239
11.2 EnergyRecoverySimulationinAspenHYSYS 242
11.3 WasteStreamCombustionSimulation 244
11.4 HeatPumpSimulation 250
11.5 HeatExchangerNetworksandEnergyAnalysisToolsinAspenSoftware 253
References 261
x Contents
12 EconomicEvaluation 263
12.1 EstimationofCapitalCosts 263
12.2 EstimationofOperatingCosts 266
12.2.1 RawMaterials 267
12.2.2 Utilities 268
12.2.3 OperatingLabor 269
12.2.4 OtherManufacturingCosts 270
12.2.5 GeneralExpenses 270
12.3 AnalysisofProfitability 270
12.4 EconomicEvaluationToolsofAspenSoftware 274
12.4.1 EconomicEvaluationButton 274
12.4.2 EconomicsActive 275
12.4.3 DetailedEconomicEvaluationbyAPEA 275
References 278
Exercises–PartIII 279
PartIV PlantDesignandSimulation:NonconventionalComponents 283
13 DesignandSimulationUsingPseudocomponents 285
13.1 PetroleumAssaysandBlends 285
13.1.1 PetroleumAssayCharacterizationinAspenHYSYS 286
13.1.2 PetroleumAssayCharacterizationinAspenPlus 289
13.2 PrimaryDistillationofCrudeOil 294
13.3 CrackingandHydrocrackingProcesses 307
13.3.1 HydrocrackingofVacuumResidue 309
13.3.2 ModelingofanFCCUnitinAspenHYSYS 315
References 319
14 ProcesseswithNonconventionalSolids 321
14.1 DryingofNonconventionalSolids 321
14.2 CombustionofSolidFuels 326
14.3 Coal,Biomass,andSolidWasteGasification 329
14.3.1 Chemistry 329
14.3.2 Technology 332
14.3.3 Data 334
14.3.4 Simulation 334
14.4 PyrolysisofOrganicSolidsandBio-oilUpgrading 341
14.4.1 ComponentList 341
14.4.2 PropertyModels 342
14.4.3 ProcessFlowDiagram 342
14.4.4 FeedStream 344
14.4.5 PyrolysisYields 344
14.4.6 DistillationColumn 344
14.4.7 Results 344
References 346
15 ProcesseswithElectrolytes 347
15.1 AcidGasRemovalbyanAlkaliAqueousSolution 347
15.1.1 Chemistry 347
15.1.2 PropertyMethods 350
15.1.3 ProcessFlowDiagram 351
15.1.4 SimulationResults 353
Contents xi
15.2 SimulationofSourGasRemovalbyAqueousSolutionofAmines 355
15.3 Rate-BasedModelingofAbsorberswithElectrolytes 361
References 365
16 SimulationofPolymerProductionProcesses 367
16.1 OverviewofModelingPolymerizationProcessinAspenPlus 367
16.2 ComponentCharacterization 368
16.3 PropertyMethod 369
16.4 ReactionKinetics 370
16.5 ProcessFlowDiagram 375
16.6 Results 379
References 383
Exercises–PartIV 384
Index 387
xiii
ListofTables
1.1 Listofmostknownprocesssimulators 10 6.7 Calculationofmolefractionsfrommass
2.1 Somepropertiesofethylacetateprocess concentration 145
components 18 6.8 Resultsofthelightgasabsorption–
2.2 ASPENphysicalpropertydatabanks 26 desorptionprocess 147
2.3 AvailablesubmodelsinAspenPlus 27 6.9 Resultsofdesignspecification 150
2.4 Somecubicequationsofstateinthe 6.10 Costoftheequipment 153
AspenPhysicalPropertySystemand 7.1 Dryingcurvedata 156
AspenHYSYS 28 7.2 Particlesizedistribution 156
2.5 Equationofstatemodels 29 7.3 SolubilityofCuSO atdifferent
4
2.6 Azeotropesofethylacetate–ethanol– temperatures 161
watermixture 45 7.4 Sensitivityanalysisresults:Effectof
2.7 Singularpointsofethyl temperature 162
acetate–ethanol–watermixture 45 7.5 Materialbalanceoffiltration 163
3.1 Tubesideheattransfercoefficient 7.6 Ashparticlesizedistribution 164
correlations 73 8.1 Somepropertiesofpurecomponentsof
3.2 Shell-sideheattransfercoefficient theethylacetateprocess 182
correlations 73 8.2 Somepropertiesofpurecomponentsof
3.3 Geometryoftheheatexchangerusedin thestyreneprocess 184
Example3.4 73 8.3 Kineticparametersoftheethylacetate
4.1 Pumpperformancecurvedata 86 processfromdifferentsources 184
4.2 Compositionofnaturalgasusedin 8.4 Activationenergyofethylbenzene
Example4.2 89 catalyticdehydrogenation 185
4.3 Correlationsusedforpipepressuredrop 8.5 Parametersofdistillationcolumns 190
calculationinAspenHYSYS 92 8.6 Streamresultsforthereactivedistillation
4.4 Operatingrangeofsometypesofpumps 97 column 191
4.5 Designinformationmappedfromthe 8.7 Streamresultsfortheliquid–liquidphase
simulation 98 separator 192
4.6 Resultsofcompressorcosting 99 8.8 Streamresultsfortheethylacetate
5.1 Compositionofreactantsandproducts purificationcolumn 192
oftheethylacetateprocess 114 8.9 Streamresultsfortheaceticacid
6.1 ResultsoftheHYSYSseparatormodel 127 recoverycolumn 192
6.2 ResultsoftheAspenPlusFLASH3 8.10 Streamresultsfortheaqueousphase
model 128 distillationcolumn 193
6.3 Materialandenergybalanceofthe 8.11 Resultsofthereactionpartsimulationof
column 135 thestyreneprocess 196
6.4 Conditionsandcompositionsofmaterial 8.12 Resultsoftheseparationpartsimulation
streamsinextractivedistillation 139 ofthestyreneprocess 199
6.5 Resultsofazeotropicdistillation 141 9.1 Feedstreamsmassflowsand
6.6 Resultsofreactivedistillationsimulation 144 compositions 205