Table Of ContentCarbon-Based
Nanomaterials 3.0
Edited by
Ana María Díez-Pascual
Printed Edition of the Special Issue Published in
International Journal of Molecular Sciences
www.mdpi.com/journal/ijms
Carbon-Based Nanomaterials 3.0
Carbon-Based Nanomaterials 3.0
Editor
Ana Mar´ıa D´ıez-Pascual
MDPI‚Basel‚Beijing‚Wuhan‚Barcelona‚Belgrade‚Manchester‚Tokyo‚Cluj‚Tianjin
Editor
AnaMar´ıaD´ıez-Pascual
AnalyticalChemistry
UniversidaddeAlcala´
Madrid
Spain
EditorialOffice
MDPI
St. Alban-Anlage66
4052Basel,Switzerland
This is a reprint of articles from the Special Issue published online in the open access journal
InternationalJournalofMolecularSciences (ISSN 1422-0067) (available at: www.mdpi.com/journal/
ijms/special issues/carbon nano 3).
For citation purposes, cite each article independently as indicated on the article page online and as
indicatedbelow:
LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Volume Number,
PageRange.
ISBN978-3-0365-6551-4(Hbk)
ISBN978-3-0365-6550-7(PDF)
© 2023 by the authors. Articles in this book are Open Access and distributed under the Creative
Commons Attribution (CC BY) license, which allows users to download, copy and build upon
publishedarticles,aslongastheauthorandpublisherareproperlycredited,whichensuresmaximum
disseminationandawiderimpactofourpublications.
ThebookasawholeisdistributedbyMDPIunderthetermsandconditionsoftheCreativeCommons
licenseCCBY-NC-ND.
Contents
AbouttheEditor ....................................................................................................................................... vii
Prefaceto”Carbon-BasedNanomaterials3.0” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
AnaM.D´ıez-Pascual
Carbon-BasedNanomaterials3.0
Reprintedfrom: Int. J.Mol. Sci. 2022,23,9321,doi:10.3390/ijms23169321 . . . . . . . . . . . . . . 1
DanielaBala, IuliaMatei,GabrielaIonita, Dragos-ViorelCosma,Marcela-CorinaRosuand
MariaStancaetal.
Luminescence, Paramagnetic, and Electrochemical Properties of Copper Oxides-Decorated
TiO /GrapheneOxideNanocomposites
2
Reprintedfrom: Int. J.Mol. Sci. 2022,23,14703,doi:10.3390/ijms232314703 . . . . . . . . . . . . . 5
Thi-HoaLe,Ji-HyeonKimandSang-JoonPark
“Turnon”FluorescenceSensorofGlutathioneBasedonInnerFilterEffectofCo-DopedCarbon
Dot/GoldNanoparticleComposites
Reprintedfrom: Int. J.Mol. Sci. 2021,23,190,doi:10.3390/ijms23010190 . . . . . . . . . . . . . . . 17
Emo˝ke Sikora, Ga´bor Mura´nszky, Ferenc Krista´ly, Be´la Fiser, La´szlo´ Farkas and Be´la
Viskolczetal.
Development of Palladium and Platinum Decorated Granulated Carbon Nanocomposites for
CatalyticChlorateElimination
Reprintedfrom: Int. J.Mol. Sci. 2022,23,10514,doi:10.3390/ijms231810514 . . . . . . . . . . . . . 29
Joon-HyukBang,Byeong-HoonLee,Young-ChulChoi,Hye-MinLeeandByung-JooKim
A Study on Superior Mesoporous Activated Carbons for Ultra Power Density Supercapacitorfrom
BiomassPrecursors
Reprintedfrom: Int. J.Mol. Sci. 2022,23,8537,doi:10.3390/ijms23158537 . . . . . . . . . . . . . . 43
VitoDespojaandLeonardoMarusˇic´
PredictionofStrongTransversals(TE)Exciton–PolaritonsinC60ThinCrystallineFilms
Reprintedfrom: Int. J.Mol. Sci. 2022,23,6943,doi:10.3390/ijms23136943 . . . . . . . . . . . . . . 57
Rene Mary Amirtha, Hao-Huan Hsu, Mohamed M. Abdelaal, Ammaiyappan Anbunathan,Saad
G.MohamedandChun-ChenYangetal.
Constructing a Carbon-Encapsulated Carbon Composite Material with Hierarchically Porous
ArchitecturesforEfficientCapacitiveStorageinOrganicSupercapacitors
Reprintedfrom: Int. J.Mol. Sci. 2022,23,6774,doi:10.3390/ijms23126774 . . . . . . . . . . . . . . 77
TingSun,XianLi,XiaochuanJin,ZiyiWu,XiachaoChenandJieqiongQiu
FunctionofGrapheneOxideasthe“Nanoquencher”forHg2+ DetectionUsinganExonucleaseI-
AssistedBiosensor
Reprintedfrom: Int. J.Mol. Sci. 2022,23,6326,doi:10.3390/ijms23116326 . . . . . . . . . . . . . . 89
TomasPlachy,ErikaKutalkova,DavidSkodaandPavlinaHolcapkova
TransformationofCelluloseviaTwo-StepCarbonizationtoConductingCarbonaceousParticles
andTheirOutstandingElectrorheologicalPerformance
Reprintedfrom: Int. J.Mol. Sci. 2022,23,5477,doi:10.3390/ijms23105477 . . . . . . . . . . . . . . 103
v
JoonwonBae,GyoEunGu,YeonJuKwon,JeaUkLeeandJin-YongHong
Functionalization of Tailored Porous Carbon Monolith for Decontamination of Radioactive
Substances
Reprintedfrom: Int. J.Mol. Sci. 2022,23,5116,doi:10.3390/ijms23095116 . . . . . . . . . . . . . . 117
Mo´nica Canales, Juan Manuel Ramı´rez-de-Arellano, Juan Salvador Arellano and Luis
FernandoMagan˜a
Ab Initio Study of the Interaction of a Graphene Surface Decorated with a Metal-Doped C
30
withCarbonMonoxide,CarbonDioxide,Methane,andOzone
Reprintedfrom: Int. J.Mol. Sci. 2022,23,4933,doi:10.3390/ijms23094933 . . . . . . . . . . . . . . 131
Leonardo Marusˇic´, Ana Kalinic´, Ivan Radovic´, Josip Jakovac, Zoran L. Misˇkovic´ and Vito
Despoja
ResolvingtheMechanismofAcousticPlasmonInstabilityinGrapheneDopedbyAlkaliMetals
Reprintedfrom: Int. J.Mol. Sci. 2022,23,4770,doi:10.3390/ijms23094770 . . . . . . . . . . . . . . 149
Wen-ShuoKuo,Yen-SungLin,Ping-ChingWu,Chia-YuanChang,Jiu-YaoWangandPei-Chi
Chenetal.
Two-Photon–Near Infrared-II Antimicrobial Graphene-Nanoagent for Ultraviolet–Near
InfraredImagingandPhotoinactivation
Reprintedfrom: Int. J.Mol. Sci. 2022,23,3230,doi:10.3390/ijms23063230 . . . . . . . . . . . . . . 165
Viritpon Srimaneepong, Hans Erling Skallevold, Zohaib Khurshid, Muhammad Sohail
Zafar,DineshRokayaandJanakSapkota
GrapheneforAntimicrobialandCoatingApplication
Reprintedfrom: Int. J.Mol. Sci. 2022,23,499,doi:10.3390/ijms23010499 . . . . . . . . . . . . . . . 177
Manuel A. Valde´s-Madrigal, Fernando Montejo-Alvaro, Amelia S. Cernas-Ruiz, Hugo
Rojas-Cha´vez,RamonRoma´n-DovalandHeribertoCruz-Martinezetal.
Role of Defect Engineering and Surface Functionalization in the Design of Carbon
Nanotube-BasedNitrogenOxideSensors
Reprintedfrom: Int. J.Mol. Sci. 2021,22,12968,doi:10.3390/ijms222312968 . . . . . . . . . . . . . 195
vi
About the Editor
AnaMar´ıaDı´ez-Pascual
Ana Maria Diez-Pascual graduated in Chemistry in 2001 (awarded Extraordinary Prize) at the
Complutense University (Madrid, Spain), where she completed her Ph.D. (2002–2005) on dynamic
and equilibrium properties of fluid interfaces under the supervision of Prof. Rubio. In 2005, she
worked at the Max Planck Institute of Colloids and Interfaces (Germany) with Prof. Miller on the
rheological characterization of water-soluble polymers. During 2006–2008, she was a postdoctoral
researcher at the Physical Chemistry Institute of the RWTH-Aachen University (Germany), where
she worked on the layer-by-layer assembly of polyelectrolyte multilayers onto thermoresponsive
microgels. Then,shemovedtotheInstituteofPolymerScienceandTechnology(Madrid,Spain)and
participated in a Canada–Spain joint project to develop carbon nanotube (CNT)-reinforced epoxy
and polyetheretherketone composites for transport applications. Currently, she is a full professor
at Alcala University (Madrid, Spain) focused on the development of polymer/nanofiller systems
for biomedical applications. She has published over 200 SCI articles (97% in Q1 journals). She
has an H-index of 43 and more than 4000 total citations. She has published 21 book chapters,
2 monographies, and edited 3 books, and is the first author of an international patent. She has
been invited to impart seminars at prestigious international research centers (i.e., Max Planck in
Germany, NRC in Canada, School of Materials in Manchester, U.K.). She was awarded the TR35
2012prizebytheMassachusettsTechnologicalInstitute(MIT)forherinnovativeworkinthefieldof
nanotechnology. SheismemberoftheYoungAcademyofSpain.
vii
Preface to ”Carbon-Based Nanomaterials 3.0”
ThisSpecialIssue, withacollectionof12originalcontributionsand2literaturereviews, offers
selectexamplesofthesurfacemodificationsofcarbonnanomaterialsthatadapttheirphysicochemical
properties, as well as their applications in a variety of fields, such as supercapacitors, sensors,
antimicrobialcoatings,bioimaging,decontamination,andsoforth.
AnaMar´ıaDı´ez-Pascual
Editor
ix
International Journal o f
Molecular Sciences
Editorial
Carbon-Based Nanomaterials 3.0
AnaM.Díez-Pascual
UniversidaddeAlcalá,FacultaddeCiencias,DepartamentodeQuímicaAnalítica,QuímicaFísicaeIngeniería
Química,Ctra.Madrid-BarcelonaKm.33.6,28805AlcaládeHenares,Madrid,Spain;[email protected]
Carbon-basednanomaterialsarecurrentlyattractingalotofinterestinmanyfields,
ranging from medicine and biotechnology to electronics, energy storage, and sensing
applications [1,2]. They show a variety of shapes, from 0D fullerenes, nanodiamonds,
andquantumdots(QDs)to1Dcarbonnanotubes(CNTs),and2Dgraphene(G)andits
derivativesgrapheneoxide(GO)andreducedgrapheneoxide(rGO)[3]. Furthermore,new
carbon-basednanomaterialsarecurrentlyunderinvestigation,suchasmutatedgraphene-
likenanomaterials,whichhavebeenfoundtobeveryeffectivefortheremovaloforganic
pollutantsfromwastewater[4],aswell3Dcarbonmonolithics,whichhavegreatpotential
forthedecontaminationofradioactivesubstances[5].
One characteristic of all carbon nanomaterials is the possibility of functionalizing
themthroughnon-covalentandcovalentmethods[6,7], whichgenerallymodifiestheir
hydrophilic, electronic, optical, and mechanical properties. Non-covalent approaches
are attained via π–π stacking, electrostatic forces, and Van der Waals forces. On the
otherhand,covalentfunctionalizationcanbeperformedviasimpleoxidation,leadingto
oxygen-containinggroupssuitableforreactingwithfunctionalgroupsofothermolecules
orpolymers. ThisSpecialIssue“Carbon-BasedNanomaterials3.0”,withacollectionof
10 original contributions and 2 literature reviews, offers select examples of the surface
modificationsofcarbonnanomaterialsthatadapttheirphysicochemicalproperties,aswell
astheirapplicationsinavarietyoffields,suchassupercapacitors,sensors,antimicrobial
coatings,bioimaging,decontamination,andsoforth.
Withanenlargedglobalfocusontacklingthechallengesofenvironmentalpollution,
Citation:Díez-Pascual,A.M. the interest in novel energy devices as an alternative to petroleum-based ones has also
Carbon-BasedNanomaterials3.0.Int. increased. In this regard, supercapacitors can be designed for use in environmentally
J.Mol.Sci.2022,23,9321. https:// friendly vehicles and new renewable energy; however, the limitation of a low energy
doi.org/10.3390/ijms23169321
densityremainsachallenge[8]. Tofurtherincreasethepowerdensityofsupercapacitors,
Received:9August2022 mesoporous carbon nanomaterials can be used. However, activated carbons with high
Accepted:17August2022 mesoporevolumesgeneratedviaphysicalactivationarenoteconomicallyviable. Thus,
Published:18August2022 todevelopcost-effectivehigh-performancesupercapacitorswithhighenergyandpower
densities,thepreparationofnovelmesoporousactivatedcarbonsshouldbeinvestigated.
Publisher’sNote:MDPIstaysneutral
Inthisregard,Bangetal.[9]haverecentlysynthesizedakenaf-derivedactivatedcarbon
withregardtojurisdictionalclaimsin
(KAC)forahigh-powerdensitysupercapacitorviaphosphoricacidactivation. Kenafwas
publishedmapsandinstitutionalaffil-
chosenastheprecursorduetoitshighproductivity,andphosphoricacidactivationwas
iations.
appliedtocreateahighspecificsurfaceareaandadvancedmesoporousstructure. The
pore-growth mechanism for KAC through phosphoric acid activation was explored by
analyzingthetexturalpropertiesandcrystalstructures. Theelectrochemicalpropertiesof
Copyright: © 2022 by the author. KACwerecomparedwithcommercialactivatedcarbon,andanimprovementwasfound
Licensee MDPI, Basel, Switzerland. bothinthespecificcapacitanceandtheion-diffusionresistance. Mesoporecontrolofthe
This article is an open access article electrodematerialiscrucialinimprovingthesupercapacitorresistanceandoutput.
distributed under the terms and Hierarchicalporousactivatedcarbon(HPAC)isanotherinterestingactivematerialfor
conditionsoftheCreativeCommons supercapacitorsduetoitshugespecificsurfaceare. Preparingelectrodeswithhigh-mass
Attribution(CCBY)license(https:// loadingisinterestinginprovidinghightotalcapacitancesandgravimetricorvolumetric
creativecommons.org/licenses/by/ energydensities[10]. Therefore,developinganHPACthatincreasesthemassloadingof
4.0/).
1
Int.J.Mol.Sci.2022,23,9321
theresultingelectrodeishighlydesirable. Inthisregard,Amirthaetal.[11]prepareda
novelhydrogel-derivedencapsulatedH-HPAC(H@H)compositematerial,withreduced
specificsurfaceareaandporeparametersbutincreasedproportionsofnitrogenspecies.
Thefree-standingandflexibleH@Helectrodesshowedremarkablereversiblecapacitance,
ratecapability,andcyclingstabilityandarealsopromisingelectrodematerialsforother
energystoragefieldssuchasmetal–ioncapacitors.
In another study, a novel carbonaceous material was prepared from cellulose car-
bonizedviatwo-steps—hydrothermalandthermalcarbonization,inorder—withoutany
chemicals[12],givinghighyieldsafteratreatmentat600 Cunderaninertatmosphere.
◦
This led to nanospheres with increased specific surface areas, as confirmed by SEM,
FTIR,X-raydiffraction,andRamanspectroscopy,aswellasenhancedconductivity. The
nanosphereswereusedasadispersedphaseinelectrorheologicalfluids,displayingexcep-
tionalelectrorheologicaleffects,considerablysurpassingrecentstate-of-the-artfindings.
Thesenewcarbonaceousparticlespreparedfromrenewablecellulosehavefurtherpotential
tobeutilizedinmanyotherapplicationsthatrequireconductingcarbonaceousstructures
withhighspecificsurfaceareasuchasadsorption,catalyst,filtration,andenergystorage,
tomentionbutafew.
GOiswellknownforitsoutstandingfluorescencequenchingcapability. Sunetal.[13]
preparedawater-solublepositivelychargedgrapheneoxidebygraftingpolyetherimide
ontoGOnanosheetsviaacarbodiimidereaction. ComparedwithconventionalGO,the
fluorescencequenchingabilityoftheDNAstrandofthenovelpositivelychargedonewas
significantly improved via an additional electrostatic interaction. The DNA probe was
almostcompletelyquenchedforconcentrationsofthepositivelychargedGOaslowas
0.1µg/mL.ThisquenchingabilitywasusedtodevelopasensorforHg2+detection,leading
toalinearconcentrationrangeof0–250nM,withalimitofdetectionof3.93nM,anditwas
successfullyappliedtorealsamplesofpondwater,leadingtorecoveriesintherangefrom
99.6%to101.1%.
Basedonthefluorescencequenchingabilityofnitrogen-andphosphorous-dopedcarbon
dots,asimpleandselectivesensorforglutathionedetectionwasalsodeveloped[14].There-
ductantpotentialofthedopedcarbondotswasusedtosynthesizeAuNPsandtosubsequently
formcomposites,whichwerecharacterizedviaspectroscopicandmicroscopictechniques,
includingelectrophoreticlightscatteringandXRD.Theoverlapofthefluorescenceemission
spectrumofthedopedcarbondotsandtheabsorptionspectrumofAuNPsresultedinan
effectiveinnerfiltereffectinthecompositematerial,leadingtoaquenchingofthefluorescence
intensity.InthepresenceofGSH,thefluorescenceintensityofthecompositewasrecovered,
leadingtoasensingmethodwithalimitofdetectionof0.1µM.
Nitrogen-dopedaminoacid-functionalizedGQDsshowenhancedphotoluminescence
and photostability and lead to the generation of reactive oxygen species through two-
photonphotodynamictherapy(PDT)[15]. Thisamino-N-GQDscanbeusedastwo-photon
contrastprobestotrailandlocalizeanalytesinin-depthtwo-photonimagingexecutedina
biologicalenvironmentalongwithtwo-photonPDTtoeliminateinfectiousormultidrug-
resistantmicrobes.
Nitrogenoxides(NOx)areamongsttheforemostatmosphericpollutants;hence,it
isimperativetoscreenanddetecttheirpresenceintheatmosphere. Forsuchapurpose,
low-dimensionalcarbonstructureshavebeenbroadlyusedasNOxsensors. Inparticular,
CNTs have been applied for sensing toxic gases due to their high specific surface area
andexcellentmechanicalproperties. EventhoughpristineCNTshaveshownpromising
performanceforNOxdetection,severalstrategieshavebeendevelopedsuchassurface
functionalization and defect engineering to expand the NOx-sensing ability of pristine
CNT-basedsensors. Inthisregard,thesurfacemodificationapproachesusedintherecent
decadetomodifythesensitivityandtheselectivityofCNTstoNOxhaverecentlybeen
reviewed[16].
OtheratmosphericcontaminantsthatthreatentheenvironmentandlifeincludeCO,
CO ,CH ,andO . Canalesetal.[17]haveexploredtheuseofsmallfullerenessuchas
2 4 3
2