Table Of ContentABEL SYMPOSIA
Edited by the Norwegian Mathematical Society
·
Nils A. Baas Eric M. Friedlander
·
Bjørn Jahren Paul Arne Østvær
Editors
Algebraic Topology
The Abel Symposium 2007
Proceedings of the Fourth Abel Symposium,
−
Oslo, Norway, August 5 10, 2007
Editors
NilsA.Baas EricM.Friedlander
DepartmentofMathematics DepartmentofMathematics
NTNU UniversityofSouthernCalifornia
7491Trondheim 3620VermontAvenue
Norway LosAngeles,CA90089-2532
e-mail:[email protected] USA
e-mail:[email protected]
BjørnJahren PaulArneØstvær
DepartmentofMathematics DepartmentofMathematics
UniversityofOslo UniversityofOslo
P.O.Box1053Blindern P.O.Box1053Blindern
0316Oslo 0316Oslo
Norway Norway
e-mail:[email protected] e-mail:[email protected]
ISBN978-3-642-01199-3 e-ISBN:978-3-642-01200-6
DOI:10.1007/978-3-642-01200-6
SpringerDodrechtHeidelbergLondonNewYork
LibraryofCongressControlNumber:2009926010
(cid:2)c Springer-VerlagBerlinHeidelberg2009
Thisworkissubjecttocopyright.Allrightsarereserved,whetherthewholeorpartofthematerialis
concerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation,broadcasting,
reproductiononmicrofilmorinanyotherway,andstorageindatabanks.Duplicationofthispublication
orpartsthereofispermittedonlyundertheprovisionsoftheGermanCopyrightLawofSeptember9,
1965,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer.Violations
areliabletoprosecutionundertheGermanCopyrightLaw.
Theuseofgeneral descriptive names,registered names, trademarks, etc. inthis publication does not
imply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevantprotective
lawsandregulationsandthereforefreeforgeneraluse.
Printedonacid-freepaper
SpringerispartofSpringerScience+BusinessMedia(www.springer.com)
Preface to the Series
The Niels Henrik Abel Memorial Fund was established by the Norwegian gov-
ernment on January 1, 2002. The main objective is to honor the great Norwegian
mathematicianNielsHenrikAbelbyawardinganinternationalprizeforoutstand-
ing scientific work in the field of mathematics. The prize shall contribute towards
raising the status of mathematics in society and stimulate the interest for science
amongschoolchildrenandstudents.Inkeepingwiththisobjectivetheboardofthe
Abel fundhas decided to finance one or two Abel Symposiaeach year. The topic
may be selected broadly in the area of pure and applied mathematics. The Sym-
posiashouldbeatthehighestinternationallevel,andservetobuildbridgesbetween
thenationalandinternationalresearchcommunities.TheNorwegianMathematical
Societyisresponsiblefortheevents.Ithasalsobeendecidedthatthecontributions
fromthese Symposiashouldbepresentedina seriesofproceedings,andSpringer
Verlaghasenthusiasticallyagreedtopublishtheseries.TheboardoftheNielsHen-
rikAbelMemorialFundisconfidentthattheserieswillbeavaluablecontribution
tothemathematicalliterature.
RagnarWinther
ChairmanoftheboardoftheNielsHenrikAbelMemorialFund
v
Preface
The2007AbelSymposiumtookplaceattheUniversityofOslofromAugust5to
August10,2007.Theaimofthesymposiumwastobringtogethermathematicians
whoseresearcheffortshaveledtorecentadvancesinalgebraicgeometry,algebraic
-theory,algebraictopology,andmathematicalphysics.Thecommonthemeofthis
(cid:0)symposiumwasthedevelopmentofnewperspectivesandnewconstructionswitha
categoricalflavor.Asthe lecturesatthesymposiumandthepapersofthisvolume
demonstrate,theseperspectivesandconstructionshaveenabledabroadeningofvis-
tas, a synergybetweenonce-differentiatedsubjects, andsolutionsto mathematical
problemsbotholdandnew.
This symposium was organized by two complementary groups: an external
organizing committee consisting of Eric Friedlander (Northwestern,University of
Southern California), Stefan Schwede (Bonn) and Graeme Segal (Oxford) and a
local organizing committee consisting of Nils A. Baas (Trondheim), Bjørn Ian
Dundas(Bergen),BjørnJahren(Oslo)andJohnRognes(Oslo).
The webpage of the symposium can be found at http://abelsymposium.no/
symp2007/info.html
Theinterestedreaderwillfindtitlesandabstractsofthetalkslistedhere
Monday6th Tuesday7th Wednesday8th Thursday9th
09.30 10.30 F.Morel S.Stolz J.Lurie N.Strickland
11.00 12.00 M.Hopkins A.Merkurjev J.Baez U.Jannsen
13.30 14.20 R.Cohen M.Behrens H.Esnault C.Rezk
14.40 15.30 L.Hesselholt M.Rost B.Toe¨n M.Levine
16.30 17.20 M.Ando U.Tillmann D.Freed
17.40 18.30 D.Sullivan V.Voevodsky
aswellasafewonlinelecturenotes.Moreover,onewillfindhereusefulinformation
aboutourgracioushostcity,Oslo.
The present volume consists of 12 papers written by participants (and their
collaborators).Wegiveaverybriefoverviewofeachofthesepapers.
vii
viii Preface
“Theclassifyingspaceofatopological2-group”byJ.C.BaezandD.Stevenson:
Recentworkinhighergaugetheoryhasrevealedtheimportanceofcategorisingthe
theoryofbundlesandconsideringvariousnotionsof2-bundles.Thepresentpaper
givesasurveyonrecentworkonsuchgeneralizedbundlesandtheirclassification.
“String topology in dimensions two and three” by M. Chas and D. Sullivan
describessomeapplicationsofstringtopologyinlow dimensionsforsurfacesand
3-manifolds.TheauthorsrelatetheirresultstoatheoremofW.JacoandJ.Stallings
and a group theoretical statement equivalent to the three-dimensional Poincare
conjecture.
Thepaper“Floerhomotopytheory,realizingchaincomplexesbymodulespectra,
andmanifoldswithcorners”,byR.Cohen,extendsideasoftheauthor,J.D.S.Jones
and G. Segal on realizing the Floer complex as the cellular complex of a natural
stable homotopy type. Crucial in their work was a framing condition on certain
moduli spaces, and Cohen shows that by replacing this by a certain orientability
withrespecttoageneralizedcohomologytheory ,thereisanaturaldefinitionof
(cid:0)
Floer –homology. (cid:2)
In“(cid:2)R(cid:0)elativeCherncharactersfornilpotentideals”byG.Cortin˜asandC.Weibel,
theequalityoftworelativeCherncharactersfrom -theorytocyclichomologyis
shown in the case of nilpotent ideals. This import(cid:0)ant equality has been assumed
withoutproofinvariouspapersinthepast20years,includingrecentinvestigations
ofnegative -theory.
H. Esnau(cid:0)lt’s paper “Algebraic differential characters of flat connections with
nilpotent residues” shows that characteristic classes of flat bundles on quasi-
projective varieties lift canonically to classes over a projective completion if the
localmonodromyatinfinityisunipotent.Thisshouldfacilitatethecomputationsin
somesituations,foritissometimeseasiertocomputesuchcharacteristicclassesfor
flatbundlesonquasi-projectivevarieties.
“NormvarietiesandtheChainLemma(afterMarkusRost)”byC.Haesemeyer
and C. Weibel gives detailed proofs of two results of Markus Rost known as the
“Chain Lemma”and the “Normprinciple”.The authorsplace these two resultsin
thecontextoftheoverallproofoftheBloch–Katoconjecture.Theproofsarebased
onlecturesbyRost.
In“OntheWhiteheadspectrumof thecircle”L. Hesselholtextendsthe known
computations of homotopy groups WhTop of the Whitehead spectrum of
(cid:2)
thecircle.Thisproblemisoffundam(cid:3)e(cid:0)n(cid:4)talimp(cid:4)o(cid:5)rta(cid:6)(cid:6)nceforunderstandingthehome-
omorphismgroupsofmanifolds,inparticularthoseadmittingRiemannianmetrics
of negative curvature. The author achieves complete and explicit computations
for .
J(cid:7).F. J(cid:8)ardine’s paper “Cocycle categories” presents a new approach to defining
(cid:0)
andmanipulatingcocyclesinrightpropermodelcategories.Thesecocyclemethods
provide simple new proofs of homotopy classification results for torsors, abelian
sheaf cohomology groups, group extensions and gerbes. It is also shown that the
algebraicK-theorypresheafofspacesisasimplicialstackassociatedtoa suitably
definedparabolicgroupoid.
Preface ix
“Asurveyofellipticcohomology”byJ.Lurieisanexpositoryaccountoftherela-
tionship between elliptic cohomologyand derived algebraic geometry.This paper
lies attheintersectionofhomotopytheoryandalgebraicgeometry.Precursorsare
kept to a minimum, making the paper accessible to readers with a basic back-
groundinalgebraicgeometry,particularlywiththetheoryofellipticcurves.Amore
comprehensiveaccountwithcompletedefinitionsandproofs,willappearelsewhere.
“On Voevodsky’s algebraic -theory spectrum” by I. Panin, K. Pimenov and
O. Ro¨ndigs resolves some -th(cid:0)eoreticquestionsin the modernsetting of motivic
homotopy theory. They sho(cid:0)w that the motivic spectrum , which represents
algebraic -theoryinthemotivicstablehomotopycategory(cid:9),h(cid:10)a(cid:11)sauniqueringstruc-
tureover(cid:0)theintegers.Forgeneralbaseschemesthisstructurepullsbacktogivea
distinguishedmonoidalstructurewhichtheauthorshaveemployedintheirproofof
amotivicConner–Floydtheorem.
The paper “Chern character, loop spaces and derived algebraic geometry”
authored by B. Toe¨n and G. Vezzosi presents work in progress dealing with a
categorised version of sheaf theory. Central to their work is the new notion of
“derivedcategoricalsheaves”,whichcategorisesthenotionofcomplexesofsheaves
ofmodulesonschemes.Ideasoriginatinginderivedalgebraicgeometryandhigher
categorytheoryareusedtointroduce“derivedloopspaces”andtoconstructaChern
characterforcategoricalsheaveswithvaluesincyclichomology.Thisworkcanbe
seenasanattempttodefinealgebraicanalogsofelliptic objectsandcharacteristic
classes.
“Voevodsky’slecturesonmotiviccohomology2000/2001”consistsoffourparts,
each dealingwith foundationalmaterialrevolvingaroundthe proofof the Bloch–
Kato conjecture. A motivic equivariant homotopy theory is introduced with the
specificaimofextendingnon-additivefunctors,suchassymmetricproducts,from
schemestothemotivichomotopycategory.ThetextiswrittenbyP.Deligne.
We gratefully acknowledge the generous support of the Board for the Niels
Henrik Abel Memorial Fund and the Norwegian Mathematical Society. We also
thank Ruth Allewelt and Springer-Verlagfor constantencouragementand support
duringtheeditingoftheseproceedings.
Trondheim,LosAngelesandOslo NilsA.Baas
March2009 EricM.Friedlander
BjørnJahren
PaulArneØstvær
Contents
TheClassifyingSpaceofaTopological2-Group 1
JohnC.BaezandDannyStevenson (cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)
StringTopologyinDimensionsTwoandThree 33
MoiraChasandDennisSullivan (cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)
Floer HomotopyTheory, Realizing Chain Complexesby
ModuleSpectra,andManifoldswithCorners 39
RalphL.Cohen (cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)
RelativeChernCharactersforNilpotentIdeals 61
G.Cortin˜asandC.Weibel (cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)
AlgebraicDifferentialCharactersofFlat
ConnectionswithNilpotentResidues 83
He´le`neEsnault (cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)
NormVarietiesandtheChainLemma(AfterMarkusRost) 95
ChristianHaesemeyerandChuckWeibel (cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)
OntheWhiteheadSpectrumoftheCircle 131
LarsHesselholt (cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)
CocycleCategories 185
J.F.Jardine (cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)
ASurveyofEllipticCohomology 219
J.Lurie (cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)
OnVoevodsky’sAlgebraic -TheorySpectrum 279
IvanPanin,KonstantinPimen(cid:0)ov,andOliverRo¨ndig(cid:12)(cid:12)s(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)
xi
xii Contents
Chern Character, Loop Spaces and Derived Algebraic
Geometry 331
BertrandTo(cid:12)e¨(cid:12)n(cid:12)(cid:12)a(cid:12)n(cid:12)d(cid:12)(cid:12)G(cid:12)(cid:12)a(cid:12)b(cid:12)(cid:12)r(cid:12)ie(cid:12)(cid:12)le(cid:12)(cid:12)V(cid:12)(cid:12)e(cid:12)z(cid:12)z(cid:12)o(cid:12)s(cid:12)i(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)
Voevodsky’sLecturesonMotivicCohomology2000/2001 355
PierreDeligne (cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)
Description:The 2007 Abel Symposium took place at the University of Oslo in August 2007. The goal of the symposium was to bring together mathematicians whose research efforts have led to recent advances in algebraic geometry, algebraic K-theory, algebraic topology, and mathematical physics. A common theme of th