ebook img

Deseta, N., Andersen T.B. and Ashwal, L. PDF

12 Pages·2013·4.51 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Deseta, N., Andersen T.B. and Ashwal, L.

Tectonophysics610(2014)138–149 ContentslistsavailableatScienceDirect Tectonophysics journal homepage: www.elsevier.com/locate/tecto A weakening mechanism for intermediate-depth seismicity? Detailed petrographic and microtextural observations from blueschist facies pseudotachylytes, Cape Corse, Corsica N.Desetaa,⁎,T.B.Andersenb,L.D.Ashwala aDepartmentofGeosciences,UniversityoftheWitwatersrand,PrivateBag3,2050Johannesburg,SouthAfrica bDepartmentofGeosciences,CEED,UniversityofOslo,POBox1047,Blindern,0316Oslo,Norway a r t i c l e i n f o a b s t r a c t Articlehistory: Gabbro-andperidotite-hostedpseudotachylytesfromtheAlpineSchistesLustresUnitinCorsica,previously Received9July2013 determinedtohaveformedatblueschisttolawsonite-eclogitefaciesconditions,havebeencausallylinkedto Receivedinrevisedform16October2013 thegenerationofintermediate-depthearthquakes,whichoccuratdepthsof50–300km.Detailedpetrographic Accepted3November2013 andmicrotexturalanalysesofthesepseudotachylytessuggestthattheirinitiationmaybecontrolledbya Availableonline12November2013 thermally-activatedshearrunawayprocessthatiscontrolledbyrheologyratherthanmineralogy.Thisisdocu- mentedbyshearedout,prolate,kinkedandtwinnedwallrockclaststhathavebeenpeeledoffandentrained Keywords: into the pseudotachylyte vein as sigmoid survivor clasts. The presence of metastable high temperature Shearlocalisation Intermediate-depthearthquakes crystallisationproductsinthepseudotachylyte,suchashoppersanddendritesofolivine,enstatiteanddiopside Pseudotachylyte (peridotite)andAl-richomphaciteandFe-richanorthiteinmetagabbro,aresuggestiveofashort-livedhigh- blueschist temperature event resulting from thermal instability. These high temperature mineral assemblages are overprintedbyonesindicatingareturntoambientconditionsoflowertemperatures,butstillhighpressures: glaucophane,albiteandepidoteinmetagabbroandclinochlore;andfine-grainedgranoblasticolivine,enstatite and diopside in peridotite. The observations from this detailed study of natural samples suggest that intermediate-depthseismicitymaybegeneratedbyathermalrunawayprocess. ©2014ElsevierB.V.Allrightsreserved. 1.Introduction andmicrostructuralobservationsofperidotite-andmetagabbro-hosted pseudotachylytesassociatedwithsubductionzoneseismicity,inthe Theinitiationofintermediate-depthearthquakeshaslongbeena CimadiGrateraareaofCapCorse,Corsica.Previousworksuggeststhat subjectofdebate.Thesephenomenaoccuratdepthsfrom50kmto faultingandpseudotachylytegenerationtookplaceduringsubduction 350km,which,duetohighconfiningpressures,precludetraditional atblueschisttolawsonite-eclogitefaciesconditionsunderpressuresof brittlefailure(GreenandHouston,1995;Hacker,2003;Jungetal., 1.8–2.6GPa(AustrheimandAndersen,2004;AndersenandAustrheim, 2004; Ogawa, 1987). In order to address this problem researchers 2006;Ravnaetal.,2010;VitaleBrovaroneetal.,2011).Adetaileddiscus- haveputforthseveralhypotheses,whichincludedehydrationembrit- siononthegeochemistryoftheserocksandtherolethatwaterplaysin tlement,transformationalfaultingandthermalrunawayprocesses. earthquakegenerationwillbeaddressedinaseparatepaper. Thesehypothesescanbedividedintobrittle—(solid-statedehydration embrittlementandtransformational faulting) and crystal-plastic — (shear-heating and thermal runaway) controlled processes. These 2.Geologicalsetting modelsarebasedonexperimental,numericalandgeophysicalmodel- ling, with no field observations and little work on natural samples ThestudyareaislocatedontheSSWsideofCimadiGratera,Cape (GreenandHouston,1995;Hacker,2003;Johnetal.,2009;Kelemen Corse,northernCorsica(Fig.1).Thepseudotachylytes,firstdescribed andHirth,2007;Ogawa,1987).Inthepasttwodecadeshowever,sever- byAustrheimandAndersen(2004),occurwithinlensesofgabbroand al discoveries of high pressure pseudotachylytes associated with mantleperidotiteenclosedbyserpentinite(Fig.2).Theserocksform intermediate-depth earthquakes have been made (Austrheim and part of the Schistes Lustres Complex (part of the Alpine age high Boundy,1994;Jinetal.,1998;JohnandSchenk,2006;Kanamorietal., pressure–lowtemperaturesubductioncomplex),andwhichhasbeen 1998), providing researchers with natural material with which to interpretedaseithernappesofexhumedLigurianoceaniclithosphere, evaluatepreviousmodels.Thispaperpresentsdetailedpetrographic which have slivers of crystalline continental material, or hyper- stretchedcontinentallithosphereinterleavedwithmantleimbricates ⁎ Correspondingauthor. (Agardetal.,2002;Beccaluvaetal.,1977;Jolivet,1993;Mohnetal., E-mailaddress:[email protected](N.Deseta). 2009;VitaleBrovaroneetal.,2011).Thisrockpackagewasthrustonto 0040-1951/$–seefrontmatter©2014ElsevierB.V.Allrightsreserved. http://dx.doi.org/10.1016/j.tecto.2013.11.007 N.Desetaetal./Tectonophysics610(2014)138–149 139 Fig.1.SimplifiedgeologicalmapofthestudyareainCimadiGratera.ModifiedafterAndersenandAustrheim(2006). thecontinentalmarginofEuropeduringtheLateCretaceoustoTertiary Intheperidotite,thepseudotachylytesoccurintwosetsthatextendfor Periods(Fig.1)(Jolivet,1993). upto1km:asub-verticalsetandasub-horizontalset.Withinthevein Themetagabbrosarecompositionallyuniformandencompassa setsthepseudotachylytesformcomplexveinnetworksthatover-print rangeofigneoustexturesmarkedbydifferencesingrainsize.Common and re-inject one another, indicating multiple generations of texturesarecumulatelayeringandtheinterfingeringofirregularly pseudotachylyte(Fig.2).Intheperidotite,thepseudotachylyteveinsoc- shapeddomainsoffine-andcoarse-grainedgabbro.Conversely,the casionallyformradial‘explosive’networks.Theseveinsarethickerthan peridotitesarerelativelyuniformintermsofcomposition,textureand otherinjectionorfaultveinsandcontainmorere-injectionsandcommi- grainsize.Thepseudotachylyte-bearingfaultrockshavebeenpartially nutedwallrockmaterial(Fig.2b).Incontrastwiththeperidotite-hosted metamorphosedtoblueschistandgreenschistfaciesonlyinpatches,ex- veins,thoseinthegabbroarethinnerandmorediscrete,commonly(but ceptwithintheshearzoneswherethemetamorphicreactionsarefully notalways)occurringalongtheboundarybetweentheverycoarse- equilibrated.Thepseudotachylytesoccurwithinthepristinelensesof grained(b15mm)metagabbroandfine-grained(b2mm)metagabbro gabbroandperidotitethatarerelativelyundeformedandleastaffected (Fig.2).Theperidotitepseudotachylytesshowcross-cuttingrelation- bytheregionalHP–LTmetamorphism(AndersenandAustrheim,2006). ships with serpentinised host rocks, which have been entrained intotheveinsassigmoidallozenges,indicatingabrittle–ductileover- 2.1.Fieldobservations printrelationship.Inthemetagabbrofaultrock,thepseudotachylytic crystallisation products (glaucophane) have formed CPO (crystallo- Inoutcropthepseudotachylytestypicallyhaveapositivereliefwith graphicpreferredorientation)fabricsandcontainboudinagedwallrock respecttothehostrocks.Thepseudotachylyteveinsweathertoarust- clasts, indicating a ductile overprint post-dating pseudotachylyte redcolourbutonfreshsurfacesareblack-greyandaphanitic(Fig.2). generation (Fig. 12) (Andersen and Austrheim, 2006). Many of the Comminutedwallrockclastsandflowbandingarecommonlyobserved. pseudotachylytesarecutbylaterserpentineveinsandshowahydration 140 N.Desetaetal./Tectonophysics610(2014)138–149 wallrock,entrainedmineralsaswellascrystallisationproducts(glass andcrystallites)weredone.Thebeamcurrentwasreducedtominimise sodiumlossonglass,buttestsonhighercurrentsshowedlosstobe negligible.Analyseswererunat20kV,10nA.Thereferencestandard usedwasaNi-bearingglass.RefertoMerlet(1994)formoredetailed operatingparameters. 4.Petrographicandmicrotexturalobservations Detailedpetrographicmicrotexturalanalyseswerecarriedouton thepseudotachylyteandtheadjacentwallrockinboththemetagabbro andperidotiteinordertoascertaintherheologicalbehaviouroftherock atthetimeoffusion.Featuresofthehostrocksandmicrotexturescom- montobothrocktypeswillbediscussedinthefirstsection,followedby thosecharacteristictoonlythemetagabbroortheperidotite. 4.1.Metagabbrohostrock Themetagabbrohostrockisheterogeneousingrainsizewithlarge, irregulardomains(uptoapproximatelyametreinoutcrop)ofvery coarse-grained(upto15mm)gabbrooccurringincontactandinter- fingeringwithamuchmorefine-grained(~1mm)gabbro.Themargin betweenthecoarse-andfine-graineddomainsisconsistentlysharp, lessthan5mmthick.Despitethelargegrain-sizevariabilityinthe metagabbro,theconstituentmineralassemblageisnotsignificantly variable. Theprimarygabbromineralogyislargelypreservedandcomprises plagioclase,diopside,olivineandminorilmenite.Inthinsectionthe gabbroadjacenttopseudotachylytefaultsretainslittleofitsoriginalig- neoustexture,mostofwhichhasbeentransformedintoanannealed granoblastictexturewithpoikiloblastsofolivineanddiopside.Grain boundarymigrationanddynamicrecrystallisationarecommon,partic- ularlyindiopside.Earlygreenschistfaciesmetamorphismofthehost rockhasledtovariablereplacementandrecrystallisationofdiopside by actinolite, bastite and Mg-hornblende. Plagioclase alteration to sericitehasalsotakenplace,causingthegrainstobecomecloudyand grey.Alterationoftheolivinetoserpentine,magnetiteoriddingsite hasalsobeenobserved.Post-datingtheearlygreenschistalterationis thedevelopmentofblueschistfaciesassemblages,whichmanifestin thereplacementofdiopside,actinolite,Mg-hornblendeandplagioclase byglaucophane,barroisite,albiteandepidote.Lateblueschistfacies metamorphismthatpost-datespseudotachylytegenerationatthese conditionsisassociatedwithductiledeformationandpseudotachylyte recrystallisation(Fig.12).Lateretrogrademetamorphism,particularly markedbyserpentineveinsandthepresenceofepidote,clinochlore and pumpellyite overprints the blueschist assemblage phase and patchesofthepristinematerial(Fig.13). Theearlygreenschistmetamorphismofthehostrockmaybeassoci- Fig.2.Photographsofpseudotachylytehostedbyperidotite.Panelashowsoneofthe atedwithseafloorhydrationand/orhydration-associatedfracturingin thickest(upto25cm)pseudotachylytefaultveinsobservedinthefield.Thethickness theslabbend,aswellasearlierhydrationassociatedwithextensional ofthisveinisprincipallyduetomultiplegenerationsofpseudotachylytethathave nucleatedalongthesameplane.(b)Explosivenetworkveiningofpseudotachylytesthat tectonics(Mohnetal.,2009;VitaleBrovaroneetal.,2011).Thelate radiateinalldirectionsawayfromthecentreofthefaultplane.(c)Cross-cuttingrelation- greenschistmetamorphicoverprinthasbeenobservedinthinsection shipsofpseudotachylyteself-injecting. andBSEimagesandisinterpretedtobeassociatedwithhydrationand faultinguponslabexhumation.Thislateretrogrademetamorphism overprintssomeofthepseudotachylyteveinsandisnotcutbylater overprint. Care was taken to analyse only pristine, unaltered pseudotachylytegenerations(Fig.13). pseudotachylytes. 4.2.Peridotitehostrock 3.Materialsandmethods Theperidotitehostrocksshowgradationaltransitionsfromfine-to Detailedthinsectionpetrographyandback-scatterelectron(BSE) coarse-grained(b1mm–7mm)textures.Themineralogycorresponds imaging for mineral identification and microtextural analysis were tothatofaplagioclaselherzolitewitholivineNdiopsideNenstatite,as doneonbothgabbro-andperidotite-hostedpseudotachylyte.Electron wellasminorplagioclaseandmagnetite.Therocksexhibitagranoblastic microprobeanalyseswereconductedusingaCamecaSX-100instru- texturewithannealedpoikiloblastsandsomegrainboundarymigration. mentatSpectrauLaboratory,UniversityofJohannesburg,SouthAfrica. Thediopsideandenstatitecommonlyshowexsolutionlamellaeofeach Analysesofthebulkmatrix(widebeam(10μm)andnarrow(1μm)), other and twinning of the diopside and olivine has been observed. N.Desetaetal./Tectonophysics610(2014)138–149 141 Fig.3.Imagesofmicrostructuresatfaultveinboundariesinmetagabbro.Alltheseimagesclearlyshowthatwallrockmaterialattheseboundarieshasbeensubjectedtocrystalplastic deformation.Panelashowsaboudinaged,kink-bandeddiopsideenclosedinadarkbrown,glassypseudotachylytematrix.(b)Pseudotachylyteveinwithentrained,boudinaged,wallrock aggregateofplagioclaseanddiopside.Thewallrockdiopsideandplagioclaseclearlyshowkinkinganddeformationtwinning,respectively. There is some early greenschist facies metamorphism of diopside associated with ocean–continent hyperextension and hydrothermal and enstatite to fine-grained clinochlore and tremolite by dynamic alterationduetoprogradesubduction(VitaleBrovaroneetal.,2011). recrystallisation.Theclinochlorehasaplumoseandfeatherytexture. Thelategreenschistfaciesmetamorphismislikelyassociatedwithslab Variousgenerationsofserpentinisation(includingmagnetiteandCr- exhumationprocesses. spinel)overprintallpre-existingfeaturesandarevariablydistributed throughouttherock;occasionallyassociatedwithlatereactivationof 4.3.Faultveincharacteristics pseudotachylyteveins(Fig.12c).Theperidotiteshowsnoblueschist facies mineral assemblages; only multiple stages of early and late Faultveinsformparalleltodisplacementsurfacesinthehostrock. greenschistmetamorphismareobservedpriortoandaftertheperiod(s) Wallrockclastslocallyunderwentcrystalplasticdeformationinprox- ofpseudotachylytegeneration.Theearlygreenschistmetamorphismhas imitytoveinboundariesormeltedalong/withthefaultplane(Fig.3). beenattributedtoeventsoccurringpriortopseudotachylytegeneration Microscope-andBSE-basedobservationsofthepseudotachylytevein Fig.4.Micrographsoffine-grained,recrystallizedperidotite-hostedpseudotachylyte(PST1)cutbylaterpseudotachylyte(PST2).Panelbisahighmagnificationviewwithcrossednicolsof wheretheredarrowispointingtoinpanela.Inpanelbthegrainsenclosedbytheglassyblackmeltveinsareprolateandlozenge-shapedcomparedtothosegrainsnotincontactwithPST2. Grainboundarymigrationissuggestedbythegrainboundaryalignmentofgrainsenclosedbyfaultveins.Incontrasttothepreviousfigure(Fig.5),wherecoarser-grainedwallrockwas deformed,thesephotomicrographsshowfine-grainedrecrystallisedperidotite-hostedpseudotachylytecutbyalatergenerationofpseudotachylyte. 142 N.Desetaetal./Tectonophysics610(2014)138–149 Fig.5.BSEimageofapseudotachylytefaultveinhostedbymetagabbro.Thedarkgreythermallyroundedclastsareplagioclaseuponwhichdendritesofomphacitehavecrystallisedwith interstitialglass.Thesmallerveinscross-cuttingthemainpseudotachylyteveininthisimage,arecontemporaneouswiththemoltenpseudotachylyte,ascanbeseenbythelobate–cuspate boundariesenclosingthedendrites.Thesecross-cuttingveinsappear,bytheirlowatomicnumbersandlowtotals(onEPMAanalysis)tohavecontaineddissolvedhydrousfluidsthatlater vesiculated.Plag:plagioclase,PlagWR:Wallrockplagioclase,Omph:omphacite. boundariesrevealasyndeformationalzoneintheassociatedwallrock 4.5.Microtexturesofultracataclasite thatbeginsseveralgrainwidthsfromthevein‘proper’.Thisregionis dominatedbyhighlystrained,sheared,kinked,elongatewallrockgrains Syndeformationalultracataclasiteatthemarginsofcoarse-grained (Figs.3,6).Theveinboundaryissharplycutbythepseudotachylyteand pseudotachylyte fault veins is a common feature in both the hascommonlybeenobservedtobedraggedorpeeledoffintothevein metagabbroandperidotitehostrocks.Theultracataclasitecomprisesa andissurroundedbyinjectingmelt(Fig.3b). mixtureofcomminutedclasts,meltandplasticribbons(Fig.6).The Creeptexturesassociatedwiththeformationofthepseudotachylytes sizerangeincomminutedwallrockmaterialisfrom30μmb1μm. wereobservedinthefullrangeofgrainsizesobservedinthewallrock; Themineral assemblage in theultracataclasitematches thatof the from20mmto30μm(Figs.3and4),fromshearingandkinkingas adjacentwallrock.Thedeformationofdifferentmineralspeciesinthe seen in the coarser-grained material (Fig. 4) to what appears to be ultracataclasiteappearstobedeterminedbyfracturetoughness,aspre- grainboundarycreepinfine-grainedre-crystallisedpseudotachylytes dictedbySpray(1992).Mineralswithgreaterrelativefracturetoughness thatweresubsequentlyreactivatedtogenerateamelt(Fig.4). suchasdiopside,plagioclase,Mg-hornblendeandolivinetypicallyform Thethicknessoffaultveinsrangesfromlessthan1mmtomore theportionofcomminutedgrainsandmineralribbons.Softerminerals than30cm.Faultveinsweretypicallyformedbyasingleevent.However, suchasclinochlore,tremolite,serpentineandactinolitecomprisethe reactivation and multiple fusion events are exemplified by older meltandtherestoftheribbonportionintheultracataclasite(Fig.6).It pseudotachylytesurvivorclastsentrainedintoyoungerveins(Fig.4) ispossiblethatsomeofthedisplacementinthefaultveinsisaccommo- andbycross-cuttingrelations.Thelackofoffsetmarkersaswellasthein- datedbypreferentialcrystalplasticdeformationandfusionwithinthe jectionofmeltintodilationalfracturesprecludesthedeterminationofthe ultracataclasite,explainingthelackofkinematicmarkersbetweenthe truedimensionsofthefaultzoneduringasinglepseudotachylyte-forming fault vein pseudotachylyte and wallrock (Kim et al., 2010; Sibson, event.However,duetothepristinenatureofthepseudotachylytematri- 1980;Spray,1992).Themicrotexturesofthisunusualcrystal-plastic cesstudied,wehaveconcludedthatnosignificantpost-pseudotachylyte ultracataclasitemayholdinformationregardingtheearlieststagesof veindeformationoccurred. pseudotachylyte generation. It is important to take note that no ultracataclasiteappearstoforminpseudotachylytefaultveinshosted byequigranular,fine-grainedrock(~20μm)inboththeperidotiteand 4.4.Injectionveincharacteristics metagabbro. Theinjectionveinsaresecondarypseudotachylyteveinsthatema- 4.6.Microtexturesofthepseudotachylytematrix natefromparentfaultveinsintotheadjacentwallrock.Injectionveins cannotinallinstancesbetracedtotheirsourcingfaultvein.Thisis Thematricesofthemetagabbroandperidotitepseudotachylytesare duetochaoticnetworksofnearbymultipleinjectionveinsinproximity typicallydominatedbycrystallisationproductsofthemelt,withinter- andarchingself-injectionsthatcross-cutoneanother.Theveinsvary stitialcrypto-crystallinematerialorglassandentrainedwallrockclasts widelyinthickness,rangingfrom200μm,thinnerthantheaverage thatvarygreatlyinsizeandcanconstituteupto20%ofthevein,but faultvein,toN20cm,thickerthantheaveragefaultvein.Theyinject arenormallymuchless.Thepresenceofinterstitialglasswasconfirmed atallanglesfromtheirparentveins,fromnear-paralleltoperpendicu- withXRDsynchrotronanalysis(Fig.8).Theveinsarecommonlymarked lar.Theycutbetweenandthroughwallrockgrainsandarenotassociat- bystreaksorcolourbandsthatindicatecompositionalvariation,pre- edwithordependentonprecursorywallrockdeformationorfoliations. dominantlyduetoclustersofspinel,andinefficientmixingofthemelt N.Desetaetal./Tectonophysics610(2014)138–149 143 Fig.6.BSEimagesa–cofultracataclasitesatfaultveinboundariesinperidotite.Arangeofbrittle–ductiletexturesarepresentintheultracataclasite,thewidthofwhichisshownbythe cappedredline.(a)Close-upoftheultracataclasite;theblackareasareahydrousAl-richmelt,thedarkgreyareasareashearedoutpseudotachylytematrix,andthelightergreyis acombinationofshearedoutsurvivorclastsofwallrockdiopsideandpseudotachylytematrix.Imagedshowsapseudotachylytematrixcrystallisingolivine(grey)anddiopside (lightgrey)inahydrousmatrix(darkgrey).Theredboxenclosesanolivine–diopsidecrystalcomplexbeingshearedoutpriortototalsolidificationindicatingcontinued displacementalongfaultveinspostmeltproductionandfailure.Panelcshowsasimilarfeature;brittle-lookingultracataclasiteswithamatrixhostingribbonsofstretched outdiopsidemicrolites(inwhite).Wr:Wallrock,WrDi:Wallrockdiopsidegrain. (Fig. 7). The crystallisation products have various habits: hopper nucleationsurfaceandthesizeofthissurface.Whenthenucleating crystals,simpleacicularlaths,andfeatheryplumes,whichnucleateon surfaceisparticularlysmallitgenerallyformsthecoreofalargerthan clasticmaterialintheveinformingdendritesoralongveinboundaries. averagecomplexdendritecomposedofseveralmineralspecies.Space Aprincipalcontrolonmicrolitesizeisthepresenceorabsenceofa mayalsoexertacontrol oncrystallisation;areasthatappeartobe Fig.7.Micrograph(a)andBSEimage(b)ofpseudotachylytematrixinametagabbro.Colourbandsintheseveinsareevidentinbothimagesandareattributedtozoneswhereindividual mineralsoraggregateshavefusedandbecomedecrepitatedandshearedout.Clustersofmicrolitesandglassymaterialarealsoobservedtoformbands.However,thecrystallisationprod- uctsofthemeltarestronglycontrolledbyitscomposition,andhencethepre-existingmineralsthatfusedwillbethedominantcontrolovertheformationofthesecolourbands.Minimal physicalsortingorfractionationhasbeenobservedintheseveins,sothisisnotconsideredtobeasignificantfactor. 144 N.Desetaetal./Tectonophysics610(2014)138–149 Fig.8.BSEimagesofindividuallyfusingclastsenclosedinapseudotachylytematrix.(a)Thematrixisdominatedbymicrolitesandminuterelictclasts.However,attheboundaryofmelting claststhereisazoneofAl-rich,hydrousglass(Gl).Conversely,inpanelbthematrixisglassdominated(anhydrous)andthefusinggrainsareboundedbyacrystallisationfrontofAl-rich omphacite(Omph)nucleatingonplagioclase(Plag)derivedfromwallrock.Di+Trem:aggregateclastofwallrockdiopsideandtremolite. absentofanynucleatingsurfacearetypicallyhosttosomeofthelargest mostpristinesampleswereselectedformicrotexturalandgeochemical crystals. analysis.Thepseudotachylytesarehighlyheterogeneousincomposi- tiondowntothemicronscale,sothisseparationisthebestwayto 4.7.Microtexturesofsurvivorclasts gaininformationfromtheseveinsandinterprettheirmechanismof formationmeaningfully. Survivorclastscomprisewallrockmaterialthathasbeendragged into the pseudotachylyte during its formation. These can be 4.7.1.Metagabbro:pseudotachylyte monomineralicorcomposedofaggregatesofminerals.Theyaretypical- Compositionallythepseudotachylyteshostedbymetagabbroare lyangularortabularinshape,withthermallyroundedmargins.The highlyheterogeneous,stronglyreflectinglocalmineralcompositions largertabularformsareaggregatesfromthedeformedwallrockthat oftheadjacentwallrockandsurvivorclasts.However,despitethecom- havebeenscouredawayfromtheveinboundarybyinjectingmelt positionalvariabilityofthemelt,themineralogyofthecrystallisation (Fig.3).Thecompositionoftheclastsisthesameasthatoftheadjacent productsinthepseudotachylytesissimplealbeitshowinggreatchemi- wallrock mineralogy, but not in the same proportions. Hydrous calvariability.Thepseudotachylytematrixisdefinedasacombination minerals such as Mg-hornblende, clinochlore and serpentineoccur ofglass,crystallisationproductsandcomminutedmaterialthataretoo onlyinrareaggregateswithanhydrousmineralsandarethusinferred smalltoberesolvedbyelectronmicroprobeanalysis(EPMA)beam tohavemeltedpreferentially.Monomineralicolivine,diopside,magne- (b1μm).Thecrystallisationproductsaredividedintotwogroups:a tite,ilmeniteandplagioclasehaveallbeenobservedinthematrixof hightemperaturequenchassemblagewithpocketsofinterstitialglass, bothtypesofhostrock.Diopsideandplagioclasearethemostcommon andalowertemperatureassemblageinwhichdevitrificationofthe clasts derived from the metagabbro host rock, whilst olivine and glassandrecrystallisationofthepseudotachylytematrixhavetaken diopsidearethoseabundantlyfoundintheperidotite.Survivorclasts place. commonlyexhibitunduloseextinctionandkink-bandingsimilarto thatobservedjustbeyondfaultveinboundariesinthewallrock,sug- 4.7.1.1.Microliteassemblageinthemetagabbropseudotachylytes.This gestingthattheymaybederivedfromthewallrockandunderwentsim- microliteassemblageisdominatedbyomphaciteandplagioclase,with ilarcrystalplasticdeformation.Sievetexturesinshearedoutwallrock minorilmenite(Fig.10).Thisisthefirstreportedevidenceofnatural andpartiallyresorbedsurvivorclastsofolderpseudotachylytehave crystallisationofomphacitedirectlyfromamelt.Omphacitehasbeen alsobeenobserved(Fig.9). reclassified from fassaite, as it was termed by Andersen and Furtherdetailedpetrographicdatahavebeendividedaccordingto Austrheim(2006).Thecompositionofthemineralsishighlyvariable themetagabbroandperidotitehostrocks.Withinthosegroupsthe andisstronglycontrolledbymeltcompositioninthematrixorbyfusing Fig.9.BSEimagesofsievetexturesinaperidotite-hostedpseudotachylytematrix.Bothpanelsaandbshowatleasttwogenerationsofpseudotachylyte.Thesievetexturedmaterialin bothimagesistheoldestgenerationthathasbeendeformedandpartiallydigestedbyayoungerpseudotachylytegenerationintowhichshearedoutclastsoftheolderpseudotachylyte havebeenentrained.Theoldestgenerationofpseudotachylytecontainsinclusionsofrelativelowatomicnumber(andlowtotalswhenanalysedwithEPMA;~86%),suggestingthatthese arequenchedmeltinclusionswithfluidsdissolvedinthemtovaryingdegrees.PreliminaryRamanspectroscopyshowsthesevesiclestocontainglassymaterialandemptycavities, presumablyoncefilledwithfluid. N.Desetaetal./Tectonophysics610(2014)138–149 145 Fig.10.Omphaciteistheprincipalhightemperaturemineralcrystallisingfromgabbroicpseudotachylyte,withanorthiteandilmenitetolesserdegrees.Panelashowsdelicate,zoned hoppercrystalsofomphaciteenclosedbyglass;thiscrystalhabitisanindicatorofrapid,hightemperaturequenching.Panelbshowsomphaciteinwhiteandlightgreywithfeathered anddendritictextures.Thedarkgreydendritesareanorthite.Thevariationinthecompositionofomphaciteiscontrolledbythemineralthatitnucleateson,asshownbythechange ingreyscale;itslocalmeltcompositionandzoninginthecrystals.Omph:omphacite,Ilm:Ilmenite. clasts on which the microlites have nucleated. The omphacite is comprises fine-grained (b50μm) granoblastic diopside, olivine and characterisedbysignificantAl-enrichmentrelativetotypicalomphacite, enstatite(Fig.4). which could be due to the high temperature and pressure of crystallisation(averageAlO :17.3wt.%).Theplagioclaseischaracterised 5.Discussion 2 3 by high FeO and MgO contents (average FeO =1.3wt.%, total total MgO=1.1wt.%),possiblyduetotherapidityorhightemperatureof Themicrotexturesanalysedinthisstudyarespatiallyandtemporal- crystallisation, or inclusions of unresolvable omphacite or ilmenite. lyassociatedwithpseudotachylytegeneration.Theobservedcrystal– Thesemicrolitestaketheformoflaths,dendritesandskeletalhoppers plasticphenomenathatareconsideredtobecausallylinkedtofusion crystallisingfreelyinthepseudotachylytematrixornucleatingonvein andseismicfailureinclude:dislocationcreep/glide,deformationtwin- boundariesoronsurvivorclasts.Theomphaciteisclearlyzonedwith ning,kinking,bendingandultracataclasite/meltformation(Figs.6and Mg-richcoresandFe-richrims(Fig.10). 13).Theultracataclasiteobservedintheserocksisunusualinthatit containsangularcomminutedwallrockmineralsaswellasribbons 4.7.1.2.Metagabbro:devitrificationandrecrystallisationofpseudotachylytes. andstringsofmineralsexhibitingsyndeformationalductilefeatures Devitrificationofglassandrecrystallisationofthehighertemperature (Fig. 6). The interstitial areas of the ultracataclasite contain glassy mineralsthatquencheddirectlyfromthepseudotachylytemeltproduce pocketsofpreferentiallymeltedhydrousminerals,e.g.tremoliteand itsownassemblageofblueschistfaciesminerals:glaucophane,Fe-richal- clinochlore.Together,thesetexturessuggestthatthewallrockminerals bite,epidoteandminorsphene(Fig.11a,b).Thecrystalsinthisassem- mayhaveundergonepowerlawcreep-dominateddeformationthat blage are commonly coarser than those in the higher temperature reachedseismicstrainrates,toinducetheheatingandfusionofthe assemblage(upto2mm).Theyarealsomoreirregularandblockyin wallrockthatischaracterisedbythepresenceofpseudotachylytein form,nolongerexhibitingthedendritichabitsofthereplacedminerals. theserocks(Johnetal.,2009;Kameyamaetal.,1999). Theyoccasionallyshowadeformationfabricexpressedasfoldsandbou- Thequenchproductsofthepseudotachylytesindicateinitiallyvery dinsofpseudotachylyteatthethinsectionscale,indicatingaductile hightemperatures(~1600°C),followedbyareturntoblueschistto blueschistfaciesoverprint(Fig.12a). lawsonite-eclogiteconditions(~430°C–550°C,1.8–2.6GPa)(Andersen andAustrheim,2006;Ravnaetal.,2010).Whenthepseudotachylytesde- 4.7.2.Peridotite:pseudotachylyte vitrifyorrecrystallise,theresultingmineralassemblages(glaucophane, Atthemillimetretomicronscaletheperidotitepseudotachylytes albiteandepidoteinthemetagabbroanddiopside,olivine,enstatiteand showgreatvariabilityincompositionandabundanceofbulkmatrix, clinochloreintheperidotite)indicateahighpressure,lowtemperature glassandcrystallisationproducts.Despitethisvariability,themicrolites environment(Ravnaetal.,2010). consistently comprise diopside, olivine and enstatite. As with the metagabbro,theperidotitefusionproductscanbedividedintoahigh 5.1.Precursorstopseudotachylyteformation temperaturequenchassemblageandalowertemperaturedevitrifica- tionassemblage. Todate,severalmechanismshavebeenputforwardtoexplainthe initiationofintermediate-depthseismicity.Theyallsharethecommon- 4.7.2.1. Microlite assemblage in peridotite-hosted pseudotachylytes. ality of being fundamentally dependent on precursory conditions Olivine, diopside and enstatite occur as clusters of monomineralic (Green and Houston, 1995; John et al., 2009; Kelemen and Hirth, blockymicrolites(particularlyolivine)orasdendriticcomplexes.Also 2007).Therefore,weneedtoinvestigateindetailtheevidenceofany commonarelarger,polymineraliclathsanddendrites(Fig.11).The preservedpre-existingelementsthatmayelucidatethesequenceof interstitialmaterialofthebulkmatrixrangesisavariablemixtureof events that culminate in the production of these high pressure olivine and enstatite and has an H O content ranging from 0 to pseudotachylytes.Aclosespatialrelationshipbetweenpseudotachylyte 2 14.2wt.%H O. formationandfabricdevelopmentisobservedinthehostrocks.Thisis 2 notauniqueoccurrenceandhasbeennotedbypreviousworkersin 4.7.2.2.Peridotite:devitrificationandrecrystallisationofpseudotachylytes. otherpseudotachylytestudies(Bestmannetal.,2011;Hobbsetal., Devitrificationofglassandrecrystallisationofthehighertemperature 1986;Jinetal.,1998;Kimetal.,2010;Lin,1994;LundandAustrheim, mineralsthatquencheddirectlyfromthepseudotachylytemeltproduce 2003).Hobbsetal.(1986)wereamongstthefirsttoproposethepossi- distinctassemblages.Typicallythedevitrifiedmeltischaracterisedby bilitythatinhighpressurecases,pseudotachylyteandmyloniteforma- the formation of microfibrous clinochlore, serpentine and tremolite tion maybeinter-relatedprocesses;suggesting that at thehighest (Fig.9).Incontrast,pseudotachylytethathascompletelyrecrystallised deformationratespseudotachylytewouldform,followedbycataclasis 146 N.Desetaetal./Tectonophysics610(2014)138–149 andthenfabricdevelopment,potentiallyculminatinginmyloniteatthe lowestdeformationrates. Incipientfabricdevelopmentpriortoandafterpseudotachylytefor- mationhasbeenobserved(Figs.6d,12a,14).DetailedEBSDanalysisofa peridotitefaultsectionfromthesamefieldareashowsthatthewallrock mineralsareexposedtoincreasingstraintowardspseudotachylytefault veins.Thewallrockhasundergonerecrystallisationtoformanincipient latticepreferredorientation(LPO)priortoand/orduringfaultveinde- velopment(Silkoset,2013).Crystalplasticdeformationsuchasfolding, boudinaging,annealingandfoliationdevelopmentoccurringafterfault vein formation has been observed within veins and the associated wallrock(Figs.6d,12,14).Thetimelapsebetweenpseudotachylyte generation andfabric development(beforeand after) is unknown. However, the simplest explanation of the observations involves: recrystallisationinthewallrockwithincreasingstraintowardsvein boundariesaswellasrotationofelongatewallrockclastsintoparallel- ismwithdevelopingfaultveinboundaries.Continuedshearing(Fig.6) occursafterdisplacementandfusionhavetakenplace,atwhichpoint thefaultzonehadcooledenoughtocrystalliseglaucophane(inthe metagabbro)andclinochlore(intheperidotite).Wesuggestthefollow- ingsequenceofeventstoexplainourobservations: Themajorityofwallrockmaterialforbothmetagabbroandperido- titeiscoarse-grainedandpartiallydeformedduetopreviousevents. Asaresultthewallrockgrainswilllikelycontainnumerouscrystallo- graphicimperfectionsthatcanbeexploitedwhenintherightorienta- tioninthestressfieldtoformthelocioffaultnucleationandinitial fusionduetolowtemperaturecreep,followedbypowerlawcreep. 1. Thefaultwallrocksdevelopedadamagezonewithsynchronous recrystallisationandanincreasingstrain-gradienttowardsthefuture faultplaneasalsoobservedbySilkoset(2013). 2. Anisotropic wallrock fragments have rotated so that long axes becomeparallelwiththedevelopingslipsurface. 3. Deformedwall-rockfragmentsbecomeentrained,assurvivorclasts in thepseudotachylytemeltandtheirdeformation is associated with the shearing event that produced the melt. Some undergo nearcompletetocompletefusion. 4. Insomeveins,shearinganddisplacementcontinuedafterfusion, locallyattestedtobydeformedandrecrystallisedpseudotachylyte. 5. Pseudotachylyteandfaultdamagezonescooleddownsufficiently todevitrifyorrecrystallisetoglaucophane(inmetagabbro)and clinochlore(inperidotite). Itispossiblethatatlowerdeformationratesfoliationsmaydevelop inthepseudotachylyteandwallrockbetweenmajorfaultingevents. Basedontheobservationsandsequenceofeventspresentedabove, wesuggestthefollowingmodelforpseudotachylytegeneration: Themetagabbroandperidotiteweremostlycoarse-grainedrocks, butbothhostrockshadstructuralandmineralogicalheterogeneities inheritedfromearlierevents.Duringsubduction-relateddeformation, pre-existingzoneswithnumerouscrystallographicimperfectionsat favourableorientationrelativetothenewstressfieldbecometheloci ofenhanceddeformation(JessellandLister,1991;Kameyamaetal., 1999; Sibson, 1980). Low temperature and subsequent power law creep,inducedbyseismicstrainrateseventuallygaverisetofusion.It ispossiblethatseverallociinthesameorientationunderwentcontem- Fig.11.BSEimagesshowingthethreeprincipaltypesofcrystallisationstylesinperidotite hostedpseudotachylyte.Panelashowsblockymicrolitesofolivinesurroundedbyglass poraneousstrain-inducedfusion.Theseindividualmeltspotsmayin (blackinimages).TheolivinecrystalsshowstrongMg–Fezoningfromcoretorim. turnhavelinkeduptoformprimitivefaultplanes.Stick-slipaction Panelbshowspureolivinedendritesclusteredinanaggregatewithinterstitialglassina alongsuchplanewillbepreferentiallyactivatedforfurtherslipand matrixofblockyolivinecrystalsandcomplexlathsofdiopside(lightgrey)andolivine facilitatecomminutionandfusion.Asthestressisreleasedbycommi- (darkergrey).(c)Thisimageshowsanaggregateofcrystallisedmaterialinthecentre. nution,displacementandfusion,thetemperatureofthefaultanddam- Closeinspectionshowsthattheaggregateiscomposedofthreeminerals;enstatite (darkestgrey),olivine(mid-grey)anddiopside(lightgrey).Theaggregateisdominated agezonewillremainelevateduntilthestresshasdroppedbelowthe bythesecomplex,tri-mineralicdendrites.Theblackinterstitialmatrixinallthreeimages strengthofthetransientmeltedmaterialofthefault.Thereafter,heat wasanalysedtobeavariablyAl-,H2O-enrichedglassymaterial. isdissipatedbydiffusionbeyondthecoolingveinanddamagezoneto facilitatecrystallisationofthewallrocks.Thedelicatepreservationof quenchtexturesinpseudotachylytessuggestsnegliblepost-quenching N.Desetaetal./Tectonophysics610(2014)138–149 147 Fig.12.MicrographsandBSEimagesshowingthevariousrecrystallisationtexturesinpseudotachylytesfrombothhostrocks.Panelsaandbmetagabbropseudotachylyte(a)fromthe samethinsectionsampleaspanelb,onlyatalowermagnification.(a)Foldingoftherecrystallisedpseudotachylyte.Themicrolitesinpanelbareblocky,nolongerthedendriticforms showninpreviousexamples.EPMAanalysesshowthemineralassemblagetobeglaucophane,sphene(lightgreycrystals),albite(darkgreycrystals)andepidote(darkestgrey).Thecrys- talsaresubhedralanddeformedandalignedinasubtlefabricduetofolding,asshowninpanela.Imagescandd:peridotite–pseudotachylyte.(c)Adevitrifiedpseudotachylytematrixthat hasanultrafine(b1μm)ofclinochlorecomposition.Thematrixisnotrecrystallisedaspristinequencheddendritesofdiopsideareobserved(lightgreydendrites(c)andstretchedout, deformedclastsareevidentalongwithzoning/colourbandingintheveinthatarepreserved.Paneldshowsarecrystallisedmatrix;theyellowlineindicatestheformofarecrystallised wallrockaggregatethatwasentrainedintothepseudotachylyte.Thesurroundingfine-grainedmaterialcomprisesolivineandenstatiteclastswhichhavereplacedearlierdendritesand uponstagerotationunderthemicroscope,shadowsofnowreplaceddendritescanbeobserved.Theclastsinthisphotomicrographsareannealed,formingagranoblastictextureandshow noevidenceofdeformation.Itisimportanttonotethatperidotitepseudotachylyterecrystallisestoaharzburgiticcomposition. deformationinmostofthepseudotachylyteveinsexceptinthoseareas associatedwiththepseudotachylytearealignedandgrainsappearsqua- wherelaterregionaldeformationandmetamorphismarepenetrative. mousinshapeasopposedtoequant(Fig.4). Itappearsthathighervolumesofmeltareformedinthecoarser- 5.1.Possibleinfluenceofgrainsizeonpseudotachylyteformation grainedhostrock.Ofcourse,thecurrentfaultandinjectionveinthick- nessesarenotexpectedtobeanexactindicationofmeltvolume.Howev- Thegrainsizeofboththemetagabbroandtheperidotiterangesfrom er,takingveindilation,draininganddeformationintoaccountthemelt approximately20μm–260μm.Theprincipaldeformationmechanism volumeproducedbycoarse-grainedrockrelativetofine-grainedrockis ofthewallrockmaterialandentrainedsurvivorclaststhathavebeen ordersofmagnitudegreater;refertoFig.2avsFig.4whereanoutcrop shearedandkinkedbutshownoevidenceofcrystallographicrecovery scaleimageofanaveragefaultveiniscomparedtothelargestfaultvein priortopseudotachylyticfusionisinterpretedtobedislocationcreep/ observedinthefinestgrainedhostrock,seeninthinsectionasitisso glide.EBSDanalysisinarecentstudyindicatesthatthewallrocken- small.Thismaycorrespondwithpowerlawcreepasaprincipaldeforma- countered rapidly increasing strain towards the pseudotachylyte tionmechanismascoarser-grainedmaterialwouldbeeasiertodeform boundaries,withweaklydevelopedLPOs(Silkoset,2013).Theincipient thanfiner-grainedmaterial.Coarsergrainscanaccumulatemoredisloca- LPOdevelopmentcouldbeduetolocalisedstressesintherockbeing tionsandhigherdislocationdensitiesinlocalareasofslipthancanfiner accommodated by high dislocation densities in different grains grainssuggestingagreaterpotentialforlocalisedheating(Kameyama (Branlundetal.,2000;Kameyamaetal.,1999;Newmanetal.,1999). etal.,1999).Imagesofpseudotachylyteinthefiner-grainedhostrock EBSDanalysisbySilkoset(2013)andintracrystallinemicrotexturalobser- (Fig.4)suggestthatgrainboundaryslidingoccurspreferentiallyover vations(Figs.3)inthisstudysuggestdislocationcreepasapossible intra-graindeformationtoresolvetheappliedstress. dominantdeformationmechanismassociatedwithpseudotachylytefor- Furthermore,ourgeochemicalresultsshowthatgrainsizeinfluences mation.Ifthisisthecasethentherewouldbelittlegrainsizereduction meltcompositionsuchthatthebulkcompositionofapseudotachylyte throughdynamicrecrystallisationassociatedwiththeinstabilityasdiffu- derivedfromafine-grainedhostrockwillbetterapproximatefusion sioncreepwouldbeasecondarydeformationmechanism(Kameyama akintothatofanequilibriummelt(thisisduetomeltformationoccurring etal.,1999;KelemenandHirth,2007).Infiner-grainedmaterial(grain- primarilyalonggrainboundaries),whereasinpseudotachylytederived size approximately 20μm) strain has been accommodated by grain fromacoarser-grainedhost,thebulkmeltcompositiontendstoreflect boundaryslidingasopposedtointra-graindeformation;grainboundaries wholesalefusionofindividualmineralssuchasolivineordiopside.

Description:
Nov 12, 2013 brittle failure (Green and Houston, 1995; Hacker, 2003; Jung et al.,. 2004; Ogawa Cima di Gratera area of Cap Corse, Corsica. Previous work
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.